$(m,r)$-central Riordan arrays and their applications
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 919-936.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For integers $m > r \geq 0$, Brietzke (2008) defined the $(m,r)$-central coefficients of an infinite lower triangular matrix $G=(d, h)=(d_{n,k})_{n,k \in \mathbb {N}}$ as $ d_{mn+r,(m-1)n+r}$, with $n=0,1,2,\cdots $, and the $(m,r)$-central coefficient triangle of $G$ as $$ G^{(m,r)} = (d_{mn+r,(m-1)n+k+r})_{n,k \in \mathbb {N}}. $$ It is known that the $(m,r)$-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array $G=(d,h)$ with $h(0)=0$ and $d(0), h'(0)\not = 0$, we obtain the generating function of its $(m,r)$-central coefficients and give an explicit representation for the $(m,r)$-central Riordan array $G^{(m,r)}$ in terms of the Riordan array $G$. Meanwhile, the algebraic structures of the $(m,r)$-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of $m$ and $r$. As applications, we determine the $(m,r)$-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach.
DOI : 10.21136/CMJ.2017.0165-16
Classification : 05A05, 05A10, 05A19, 15A09
Keywords: Riordan array; central coefficient; central Riordan array; generating function; Fuss-Catalan number; Pascal matrix; Catalan matrix
@article{10_21136_CMJ_2017_0165_16,
     author = {Yang, Sheng-Liang and Xu, Yan-Xue and He, Tian-Xiao},
     title = {$(m,r)$-central {Riordan} arrays and their applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {919--936},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2017},
     doi = {10.21136/CMJ.2017.0165-16},
     mrnumber = {3736009},
     zbl = {06819563},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/}
}
TY  - JOUR
AU  - Yang, Sheng-Liang
AU  - Xu, Yan-Xue
AU  - He, Tian-Xiao
TI  - $(m,r)$-central Riordan arrays and their applications
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 919
EP  - 936
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/
DO  - 10.21136/CMJ.2017.0165-16
LA  - en
ID  - 10_21136_CMJ_2017_0165_16
ER  - 
%0 Journal Article
%A Yang, Sheng-Liang
%A Xu, Yan-Xue
%A He, Tian-Xiao
%T $(m,r)$-central Riordan arrays and their applications
%J Czechoslovak Mathematical Journal
%D 2017
%P 919-936
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/
%R 10.21136/CMJ.2017.0165-16
%G en
%F 10_21136_CMJ_2017_0165_16
Yang, Sheng-Liang; Xu, Yan-Xue; He, Tian-Xiao. $(m,r)$-central Riordan arrays and their applications. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 919-936. doi : 10.21136/CMJ.2017.0165-16. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/

Cité par Sources :