$(m,r)$-central Riordan arrays and their applications
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 919-936 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For integers $m > r \geq 0$, Brietzke (2008) defined the $(m,r)$-central coefficients of an infinite lower triangular matrix $G=(d, h)=(d_{n,k})_{n,k \in \mathbb {N}}$ as $ d_{mn+r,(m-1)n+r}$, with $n=0,1,2,\cdots $, and the $(m,r)$-central coefficient triangle of $G$ as $$ G^{(m,r)} = (d_{mn+r,(m-1)n+k+r})_{n,k \in \mathbb {N}}. $$ It is known that the $(m,r)$-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array $G=(d,h)$ with $h(0)=0$ and $d(0), h'(0)\not = 0$, we obtain the generating function of its $(m,r)$-central coefficients and give an explicit representation for the $(m,r)$-central Riordan array $G^{(m,r)}$ in terms of the Riordan array $G$. Meanwhile, the algebraic structures of the $(m,r)$-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of $m$ and $r$. As applications, we determine the $(m,r)$-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach.
For integers $m > r \geq 0$, Brietzke (2008) defined the $(m,r)$-central coefficients of an infinite lower triangular matrix $G=(d, h)=(d_{n,k})_{n,k \in \mathbb {N}}$ as $ d_{mn+r,(m-1)n+r}$, with $n=0,1,2,\cdots $, and the $(m,r)$-central coefficient triangle of $G$ as $$ G^{(m,r)} = (d_{mn+r,(m-1)n+k+r})_{n,k \in \mathbb {N}}. $$ It is known that the $(m,r)$-central coefficient triangles of any Riordan array are also Riordan arrays. In this paper, for a Riordan array $G=(d,h)$ with $h(0)=0$ and $d(0), h'(0)\not = 0$, we obtain the generating function of its $(m,r)$-central coefficients and give an explicit representation for the $(m,r)$-central Riordan array $G^{(m,r)}$ in terms of the Riordan array $G$. Meanwhile, the algebraic structures of the $(m,r)$-central Riordan arrays are also investigated, such as their decompositions, their inverses, and their recessive expressions in terms of $m$ and $r$. As applications, we determine the $(m,r)$-central Riordan arrays of the Pascal matrix and other Riordan arrays, from which numerous identities are constructed by a uniform approach.
DOI : 10.21136/CMJ.2017.0165-16
Classification : 05A05, 05A10, 05A19, 15A09
Keywords: Riordan array; central coefficient; central Riordan array; generating function; Fuss-Catalan number; Pascal matrix; Catalan matrix
@article{10_21136_CMJ_2017_0165_16,
     author = {Yang, Sheng-Liang and Xu, Yan-Xue and He, Tian-Xiao},
     title = {$(m,r)$-central {Riordan} arrays and their applications},
     journal = {Czechoslovak Mathematical Journal},
     pages = {919--936},
     year = {2017},
     volume = {67},
     number = {4},
     doi = {10.21136/CMJ.2017.0165-16},
     mrnumber = {3736009},
     zbl = {06819563},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/}
}
TY  - JOUR
AU  - Yang, Sheng-Liang
AU  - Xu, Yan-Xue
AU  - He, Tian-Xiao
TI  - $(m,r)$-central Riordan arrays and their applications
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 919
EP  - 936
VL  - 67
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/
DO  - 10.21136/CMJ.2017.0165-16
LA  - en
ID  - 10_21136_CMJ_2017_0165_16
ER  - 
%0 Journal Article
%A Yang, Sheng-Liang
%A Xu, Yan-Xue
%A He, Tian-Xiao
%T $(m,r)$-central Riordan arrays and their applications
%J Czechoslovak Mathematical Journal
%D 2017
%P 919-936
%V 67
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/
%R 10.21136/CMJ.2017.0165-16
%G en
%F 10_21136_CMJ_2017_0165_16
Yang, Sheng-Liang; Xu, Yan-Xue; He, Tian-Xiao. $(m,r)$-central Riordan arrays and their applications. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 919-936. doi: 10.21136/CMJ.2017.0165-16

[1] Andrews, G. H.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7 (1969), 113-130. | MR | JFM

[2] Barry, P.: On integer-sequence-based constructions of generalized Pascal triangles. J. Integer Seq. 9 (2006), Article 06.2.4, 34 pages. | MR | JFM

[3] Barry, P.: On the central coefficients of Bell matrices. J. Integer Seq. 14 (2011), Article 11.4.3, 10 pages. | MR | JFM

[4] Barry, P.: On the central coefficients of Riordan matrices. J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. | MR | JFM

[5] Brietzke, E. H. M.: An identity of Andrews and a new method for the Riordan array proof of combinatorial identities. Discrete Math. 308 (2008), 4246-4262. | DOI | MR | JFM

[6] Cheon, G.-S., Jin, S.-T.: Structural properties of Riordan matrices and extending the matrices. Linear Algebra Appl. 435 (2011), 2019-2032. | DOI | MR | JFM

[7] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences. Discrete Math. 312 (2012), 2040-2049. | DOI | MR | JFM

[8] Comtet, L.: Advanced Combinatorics. The Art of Finite and Infinite Expansions. D. Reidel Publishing, Dordrecht (1974). | DOI | MR | JFM

[9] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science. Addison-Wesley Publishing Company, Reading (1989). | MR | JFM

[10] He, T.-X.: Parametric Catalan numbers and Catalan triangles. Linear Algebra Appl. 438 (2013), 1467-1484. | DOI | MR | JFM

[11] He, T.-X.: Matrix characterizations of Riordan arrays. Linear Algebra Appl. 465 (2015), 15-42. | DOI | MR | JFM

[12] He, T.-X., Sprugnoli, R.: Sequence characterization of Riordan arrays. Discrete Math. 309 (2009), 3962-3974. | DOI | MR | JFM

[13] Kruchinin, D., Kruchinin, V.: A method for obtaining generating functions for central coefficients of triangles. J. Integer Seq. 15 (2012), Article 12.9.3, 10 pages. | MR | JFM

[14] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays. Can. J. Math. 49 (1997), 301-320. | DOI | MR | JFM

[15] Merlini, D., Sprugnoli, R., Verri, M. C.: Lagrange inversion: when and how. Acta Appl. Math. 94 (2006), 233-249. | DOI | MR | JFM

[16] Młotkowski, W.: Fuss-Catalan numbers in noncommutative probability. Doc. Math., J. DMV 15 (2010), 939-955. | MR | JFM

[17] Rogers, D. G.: Pascal triangles, Catalan numbers and renewal arrays. Discrete Math. 22 (1978), 301-310. | DOI | MR | JFM

[18] Shapiro, L. W.: A Catalan triangle. Discrete Math. 14 (1976), 83-90. | DOI | MR | JFM

[19] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group. Discrete Appl. Math. 34 (1991), 229-239. | DOI | MR | JFM

[20] Sprugnoli, R.: Riordan arrays and combinatorial sums. Discrete Math. 132 (1994), 267-290. | DOI | MR | JFM

[21] Stanley, R. P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). | DOI | MR | JFM

[22] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix. Linear Algebra Appl. 439 (2013), 3605-3614. | DOI | MR | JFM

Cité par Sources :