Keywords: Riordan array; central coefficient; central Riordan array; generating function; Fuss-Catalan number; Pascal matrix; Catalan matrix
@article{10_21136_CMJ_2017_0165_16,
author = {Yang, Sheng-Liang and Xu, Yan-Xue and He, Tian-Xiao},
title = {$(m,r)$-central {Riordan} arrays and their applications},
journal = {Czechoslovak Mathematical Journal},
pages = {919--936},
year = {2017},
volume = {67},
number = {4},
doi = {10.21136/CMJ.2017.0165-16},
mrnumber = {3736009},
zbl = {06819563},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/}
}
TY - JOUR AU - Yang, Sheng-Liang AU - Xu, Yan-Xue AU - He, Tian-Xiao TI - $(m,r)$-central Riordan arrays and their applications JO - Czechoslovak Mathematical Journal PY - 2017 SP - 919 EP - 936 VL - 67 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/ DO - 10.21136/CMJ.2017.0165-16 LA - en ID - 10_21136_CMJ_2017_0165_16 ER -
%0 Journal Article %A Yang, Sheng-Liang %A Xu, Yan-Xue %A He, Tian-Xiao %T $(m,r)$-central Riordan arrays and their applications %J Czechoslovak Mathematical Journal %D 2017 %P 919-936 %V 67 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0165-16/ %R 10.21136/CMJ.2017.0165-16 %G en %F 10_21136_CMJ_2017_0165_16
Yang, Sheng-Liang; Xu, Yan-Xue; He, Tian-Xiao. $(m,r)$-central Riordan arrays and their applications. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 4, pp. 919-936. doi: 10.21136/CMJ.2017.0165-16
[1] Andrews, G. H.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7 (1969), 113-130. | MR | JFM
[2] Barry, P.: On integer-sequence-based constructions of generalized Pascal triangles. J. Integer Seq. 9 (2006), Article 06.2.4, 34 pages. | MR | JFM
[3] Barry, P.: On the central coefficients of Bell matrices. J. Integer Seq. 14 (2011), Article 11.4.3, 10 pages. | MR | JFM
[4] Barry, P.: On the central coefficients of Riordan matrices. J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. | MR | JFM
[5] Brietzke, E. H. M.: An identity of Andrews and a new method for the Riordan array proof of combinatorial identities. Discrete Math. 308 (2008), 4246-4262. | DOI | MR | JFM
[6] Cheon, G.-S., Jin, S.-T.: Structural properties of Riordan matrices and extending the matrices. Linear Algebra Appl. 435 (2011), 2019-2032. | DOI | MR | JFM
[7] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences. Discrete Math. 312 (2012), 2040-2049. | DOI | MR | JFM
[8] Comtet, L.: Advanced Combinatorics. The Art of Finite and Infinite Expansions. D. Reidel Publishing, Dordrecht (1974). | DOI | MR | JFM
[9] Graham, R. L., Knuth, D. E., Patashnik, O.: Concrete Mathematics. A Foundation for Computer Science. Addison-Wesley Publishing Company, Reading (1989). | MR | JFM
[10] He, T.-X.: Parametric Catalan numbers and Catalan triangles. Linear Algebra Appl. 438 (2013), 1467-1484. | DOI | MR | JFM
[11] He, T.-X.: Matrix characterizations of Riordan arrays. Linear Algebra Appl. 465 (2015), 15-42. | DOI | MR | JFM
[12] He, T.-X., Sprugnoli, R.: Sequence characterization of Riordan arrays. Discrete Math. 309 (2009), 3962-3974. | DOI | MR | JFM
[13] Kruchinin, D., Kruchinin, V.: A method for obtaining generating functions for central coefficients of triangles. J. Integer Seq. 15 (2012), Article 12.9.3, 10 pages. | MR | JFM
[14] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays. Can. J. Math. 49 (1997), 301-320. | DOI | MR | JFM
[15] Merlini, D., Sprugnoli, R., Verri, M. C.: Lagrange inversion: when and how. Acta Appl. Math. 94 (2006), 233-249. | DOI | MR | JFM
[16] Młotkowski, W.: Fuss-Catalan numbers in noncommutative probability. Doc. Math., J. DMV 15 (2010), 939-955. | MR | JFM
[17] Rogers, D. G.: Pascal triangles, Catalan numbers and renewal arrays. Discrete Math. 22 (1978), 301-310. | DOI | MR | JFM
[18] Shapiro, L. W.: A Catalan triangle. Discrete Math. 14 (1976), 83-90. | DOI | MR | JFM
[19] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group. Discrete Appl. Math. 34 (1991), 229-239. | DOI | MR | JFM
[20] Sprugnoli, R.: Riordan arrays and combinatorial sums. Discrete Math. 132 (1994), 267-290. | DOI | MR | JFM
[21] Stanley, R. P.: Enumerative Combinatorics. Vol. 2. Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). | DOI | MR | JFM
[22] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix. Linear Algebra Appl. 439 (2013), 3605-3614. | DOI | MR | JFM
Cité par Sources :