Keywords: oriented graph; cycle; minimum semidegree
@article{10_21136_CMJ_2017_0131_16,
author = {Ji, Yurong and Wu, Shufei and Song, Hui},
title = {On short cycles in triangle-free oriented graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {67--75},
year = {2018},
volume = {68},
number = {1},
doi = {10.21136/CMJ.2017.0131-16},
mrnumber = {3783585},
zbl = {06861567},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0131-16/}
}
TY - JOUR AU - Ji, Yurong AU - Wu, Shufei AU - Song, Hui TI - On short cycles in triangle-free oriented graphs JO - Czechoslovak Mathematical Journal PY - 2018 SP - 67 EP - 75 VL - 68 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0131-16/ DO - 10.21136/CMJ.2017.0131-16 LA - en ID - 10_21136_CMJ_2017_0131_16 ER -
%0 Journal Article %A Ji, Yurong %A Wu, Shufei %A Song, Hui %T On short cycles in triangle-free oriented graphs %J Czechoslovak Mathematical Journal %D 2018 %P 67-75 %V 68 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0131-16/ %R 10.21136/CMJ.2017.0131-16 %G en %F 10_21136_CMJ_2017_0131_16
Ji, Yurong; Wu, Shufei; Song, Hui. On short cycles in triangle-free oriented graphs. Czechoslovak Mathematical Journal, Tome 68 (2018) no. 1, pp. 67-75. doi: 10.21136/CMJ.2017.0131-16
[1] Bang-Jensen, J., Gutin, G. Z.: Digraphs: Theory, Algorithms and Applications. Springer Monographs in Mathematics, Springer, London (2001). | DOI | MR | JFM
[2] Bondy, J. A.: Counting subgraphs a new approach to the Caccetta-Häggkvist conjecture. Discrete Math. 165-166 (1997), 71-80. | DOI | MR | JFM
[3] Caccetta, L., Häggkvist, R.: On minimal digraphs with given girth. Proc. 9th Southeast. Conf. on Combinatorics, Graph Theory, and Computing: Florida Atlantic University. Boca Raton, 1978 Congress. Numer. 21, Utilitas Math. Publishing, Winnipeg (1978), 181-187. | MR | JFM
[4] Christofides, D., Keevash, P., Kühn, D., Osthus, D.: A semiexact degree condition for Hamilton cycles in digraphs. SIAM J. Discrete Math. 24 (2010), 709-756. | DOI | MR | JFM
[5] Hamburger, P., Haxell, P., Kostochka, A.: On directed triangles in digraphs. Electron. J. Comb. 14 (2007), Research Paper N19, 9 pages. | MR | JFM
[6] Hladký, J., Kráľ, D., Norin, S.: Counting flags in triangle-free digraphs. Extended abstracts of the 5th European Conf. on Combinatorics, Graph Theory and Applications Bordeaux, 2009, Elsevier, Amsterdam, Electronic Notes in Discrete Mathematics 34 J. Nešetřil et al. (2009), 621-625. | DOI | MR | JFM
[7] Keevash, P., Kühn, D., Osthus, D.: An exact minimum degree condition for Hamilton cycles in oriented graphs. J. Lond. Math. Soc., II. Ser. 79 (2009), 144-166. | DOI | MR | JFM
[8] Kelly, L., Kühn, D., Osthus, D.: A Dirac-type result on Hamilton cycles in oriented graphs. Comb. Probab. Comput. 17 (2008), 689-709. | DOI | MR | JFM
[9] Kelly, L., Kühn, D., Osthus, D.: Cycles of given length in oriented graphs. J. Comb. Theory, Ser. B 100 (2010), 251-264. | DOI | MR | JFM
[10] Kühn, D., Osthus, D.: A survey on Hamilton cycles in directed graphs. Eur. J. Comb. 33 (2012), 750-766. | DOI | MR | JFM
[11] Kühn, D., Osthus, D., Treglown, A.: Hamiltonian degree sequences in digraphs. J. Comb. Theory, Ser. B 100 (2010), 367-380. | DOI | MR | JFM
[12] Lichiardopol, N.: A new bound for a particular case of the Caccetta-Häggkvist conjecture. Discrete Math. 310 (2010), 3368-3372. | DOI | MR | JFM
[13] Razborov, A. A.: Flag algebras. J. Symb. Log. 72 (2007), 1239-1282. | DOI | MR | JFM
[14] Shen, J.: Directed triangles in digraphs. J. Comb. Theory, Ser. B 74 (1998), 405-407. | DOI | MR | JFM
[15] Sullivan, B. D.: A summary of results and problems related to the Caccetta-Häggkvist conjecture. Available at ArXiv:math/0605646v1 [math.CO] (2006).
Cité par Sources :