The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 537-549
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the Bergman kernel function for the intersection of two complex ellipsoids $\{(z,w_1,w_2) \in \mathbb {C}^{n+2} \colon |z_1|^2 + \cdots + |z_n|^2 + |w_1|^q 1, \ |z_1|^2 + \cdots + |z_n|^2 + |w_2|^r 1\}. $ We also compute the kernel function for $\{(z_1,w_1,w_2) \in \mathbb {C}^3 \colon |z_1|^{2/n} + |w_1|^q 1, \ |z_1|^{2/n} + |w_2|^r 1\}$ and show deflation type identity between these two domains. Moreover in the case that $q=r=2$ we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.
We investigate the Bergman kernel function for the intersection of two complex ellipsoids $\{(z,w_1,w_2) \in \mathbb {C}^{n+2} \colon |z_1|^2 + \cdots + |z_n|^2 + |w_1|^q 1, \ |z_1|^2 + \cdots + |z_n|^2 + |w_2|^r 1\}. $ We also compute the kernel function for $\{(z_1,w_1,w_2) \in \mathbb {C}^3 \colon |z_1|^{2/n} + |w_1|^q 1, \ |z_1|^{2/n} + |w_2|^r 1\}$ and show deflation type identity between these two domains. Moreover in the case that $q=r=2$ we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.
DOI : 10.21136/CMJ.2017.0073-16
Classification : 32A25, 33D70
Keywords: Lu Qi-Keng problem; Bergman kernel; Routh-Hurwitz theorem; Jacobi polynomial
@article{10_21136_CMJ_2017_0073_16,
     author = {Beberok, Tomasz},
     title = {The {Bergman} kernel: {Explicit} formulas, deflation, {Lu} {Qi-Keng} problem and {Jacobi} polynomials},
     journal = {Czechoslovak Mathematical Journal},
     pages = {537--549},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.2017.0073-16},
     mrnumber = {3661059},
     zbl = {06738537},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/}
}
TY  - JOUR
AU  - Beberok, Tomasz
TI  - The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 537
EP  - 549
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/
DO  - 10.21136/CMJ.2017.0073-16
LA  - en
ID  - 10_21136_CMJ_2017_0073_16
ER  - 
%0 Journal Article
%A Beberok, Tomasz
%T The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials
%J Czechoslovak Mathematical Journal
%D 2017
%P 537-549
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/
%R 10.21136/CMJ.2017.0073-16
%G en
%F 10_21136_CMJ_2017_0073_16
Beberok, Tomasz. The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 537-549. doi: 10.21136/CMJ.2017.0073-16

[1] Beberok, T.: Lu Qi-Keng’s problem for intersection of two complex ellipsoids. Complex Anal. Oper. Theory 10 (2016), 943-951. | DOI | MR | JFM

[2] Bergman, S.: Zur Theorie von pseudokonformen Abbildungen. Mat. Sb. (N.S.) 1 (1936), 79-96. | JFM

[3] Boas, H. P., Fu, S., Straube, E. J.: The Bergman kernel function: Explicit formulas and zeroes. Proc. Amer. Math. Soc. 127 (1999), 805-811. | DOI | MR | JFM

[4] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. | DOI | MR | JFM

[5] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. 1, Bateman Manuscript Project, McGraw-Hill, New York (1953). | MR | JFM

[6] Krantz, S. G.: Geometric Analysis of the Bergman Kernel and Metric. Graduate Texts in Mathematics 268, Springer, New York (2013). | DOI | MR | JFM

[7] Šiljak, D. D., Stipanović, D. M.: Stability of interval two-variable polynomials and quasipolynomials via positivity. Positive Polynomials in Control D. Henrion, et al. Lecture Notes in Control and Inform. Sci. 312, Springer, Berlin (2005), 165-177. | DOI | MR | JFM

[8] Wang, X.: Recursion formulas for Appell functions. Integral Transforms Spec. Funct. 23 (2012), 421-433. | DOI | MR | JFM

Cité par Sources :