Keywords: Lu Qi-Keng problem; Bergman kernel; Routh-Hurwitz theorem; Jacobi polynomial
@article{10_21136_CMJ_2017_0073_16,
author = {Beberok, Tomasz},
title = {The {Bergman} kernel: {Explicit} formulas, deflation, {Lu} {Qi-Keng} problem and {Jacobi} polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {537--549},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0073-16},
mrnumber = {3661059},
zbl = {06738537},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/}
}
TY - JOUR AU - Beberok, Tomasz TI - The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials JO - Czechoslovak Mathematical Journal PY - 2017 SP - 537 EP - 549 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/ DO - 10.21136/CMJ.2017.0073-16 LA - en ID - 10_21136_CMJ_2017_0073_16 ER -
%0 Journal Article %A Beberok, Tomasz %T The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials %J Czechoslovak Mathematical Journal %D 2017 %P 537-549 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/ %R 10.21136/CMJ.2017.0073-16 %G en %F 10_21136_CMJ_2017_0073_16
Beberok, Tomasz. The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 537-549. doi: 10.21136/CMJ.2017.0073-16
[1] Beberok, T.: Lu Qi-Keng’s problem for intersection of two complex ellipsoids. Complex Anal. Oper. Theory 10 (2016), 943-951. | DOI | MR | JFM
[2] Bergman, S.: Zur Theorie von pseudokonformen Abbildungen. Mat. Sb. (N.S.) 1 (1936), 79-96. | JFM
[3] Boas, H. P., Fu, S., Straube, E. J.: The Bergman kernel function: Explicit formulas and zeroes. Proc. Amer. Math. Soc. 127 (1999), 805-811. | DOI | MR | JFM
[4] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. | DOI | MR | JFM
[5] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions. Vol. 1, Bateman Manuscript Project, McGraw-Hill, New York (1953). | MR | JFM
[6] Krantz, S. G.: Geometric Analysis of the Bergman Kernel and Metric. Graduate Texts in Mathematics 268, Springer, New York (2013). | DOI | MR | JFM
[7] Šiljak, D. D., Stipanović, D. M.: Stability of interval two-variable polynomials and quasipolynomials via positivity. Positive Polynomials in Control D. Henrion, et al. Lecture Notes in Control and Inform. Sci. 312, Springer, Berlin (2005), 165-177. | DOI | MR | JFM
[8] Wang, X.: Recursion formulas for Appell functions. Integral Transforms Spec. Funct. 23 (2012), 421-433. | DOI | MR | JFM
Cité par Sources :