The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 537-549
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We investigate the Bergman kernel function for the intersection of two complex ellipsoids $\{(z,w_1,w_2) \in \mathbb {C}^{n+2} \colon |z_1|^2 + \cdots + |z_n|^2 + |w_1|^q 1, \ |z_1|^2 + \cdots + |z_n|^2 + |w_2|^r 1\}. $ We also compute the kernel function for $\{(z_1,w_1,w_2) \in \mathbb {C}^3 \colon |z_1|^{2/n} + |w_1|^q 1, \ |z_1|^{2/n} + |w_2|^r 1\}$ and show deflation type identity between these two domains. Moreover in the case that $q=r=2$ we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.
We investigate the Bergman kernel function for the intersection of two complex ellipsoids $\{(z,w_1,w_2) \in \mathbb {C}^{n+2} \colon |z_1|^2 + \cdots + |z_n|^2 + |w_1|^q 1, \ |z_1|^2 + \cdots + |z_n|^2 + |w_2|^r 1\}. $ We also compute the kernel function for $\{(z_1,w_1,w_2) \in \mathbb {C}^3 \colon |z_1|^{2/n} + |w_1|^q 1, \ |z_1|^{2/n} + |w_2|^r 1\}$ and show deflation type identity between these two domains. Moreover in the case that $q=r=2$ we express the Bergman kernel in terms of the Jacobi polynomials. The explicit formulas of the Bergman kernel function for these domains enables us to investigate whether the Bergman kernel has zeros or not. This kind of problem is called a Lu Qi-Keng problem.
DOI :
10.21136/CMJ.2017.0073-16
Classification :
32A25, 33D70
Keywords: Lu Qi-Keng problem; Bergman kernel; Routh-Hurwitz theorem; Jacobi polynomial
Keywords: Lu Qi-Keng problem; Bergman kernel; Routh-Hurwitz theorem; Jacobi polynomial
@article{10_21136_CMJ_2017_0073_16,
author = {Beberok, Tomasz},
title = {The {Bergman} kernel: {Explicit} formulas, deflation, {Lu} {Qi-Keng} problem and {Jacobi} polynomials},
journal = {Czechoslovak Mathematical Journal},
pages = {537--549},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.2017.0073-16},
mrnumber = {3661059},
zbl = {06738537},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/}
}
TY - JOUR AU - Beberok, Tomasz TI - The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials JO - Czechoslovak Mathematical Journal PY - 2017 SP - 537 EP - 549 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/ DO - 10.21136/CMJ.2017.0073-16 LA - en ID - 10_21136_CMJ_2017_0073_16 ER -
%0 Journal Article %A Beberok, Tomasz %T The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials %J Czechoslovak Mathematical Journal %D 2017 %P 537-549 %V 67 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2017.0073-16/ %R 10.21136/CMJ.2017.0073-16 %G en %F 10_21136_CMJ_2017_0073_16
Beberok, Tomasz. The Bergman kernel: Explicit formulas, deflation, Lu Qi-Keng problem and Jacobi polynomials. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 537-549. doi: 10.21136/CMJ.2017.0073-16
Cité par Sources :