An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$
Czechoslovak Mathematical Journal, Tome 46 (1996) no. 3, pp. 427-474 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1996.127308
Classification : 53B20, 53C20, 53C25
@article{10_21136_CMJ_1996_127308,
     author = {Kowalski, Old\v{r}ich},
     title = {An explicit classification of 3-dimensional {Riemannian} spaces satisfying $R(X,Y) \cdot R = 0$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {427--474},
     year = {1996},
     volume = {46},
     number = {3},
     doi = {10.21136/CMJ.1996.127308},
     mrnumber = {1408298},
     zbl = {0879.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1996.127308/}
}
TY  - JOUR
AU  - Kowalski, Oldřich
TI  - An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$
JO  - Czechoslovak Mathematical Journal
PY  - 1996
SP  - 427
EP  - 474
VL  - 46
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1996.127308/
DO  - 10.21136/CMJ.1996.127308
LA  - en
ID  - 10_21136_CMJ_1996_127308
ER  - 
%0 Journal Article
%A Kowalski, Oldřich
%T An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$
%J Czechoslovak Mathematical Journal
%D 1996
%P 427-474
%V 46
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1996.127308/
%R 10.21136/CMJ.1996.127308
%G en
%F 10_21136_CMJ_1996_127308
Kowalski, Oldřich. An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. Czechoslovak Mathematical Journal, Tome 46 (1996) no. 3, pp. 427-474. doi: 10.21136/CMJ.1996.127308

[BKV] E. Boeckx, O. Kowalski and L. Vanhecke: Nonhomogeneous relatives of symmetric spaces. Differential Geometry and its Applications 4 (1994), 45–69. | MR

[Ca 1] E. Cartan: Leçons sur la géométrie des espaces de Riemann. 2nd edition. Paris, 1946. | MR

[Ca 2] E. Cartan: Les systèmes différentiels extérieurs et leurs applications géométriques. Hermann, Paris, 1945. | MR | Zbl

[K] O. Kowalski: Riemannian 3-manifolds with constant Ricci roots $\rho_1 = \rho_2 \neq \rho_3$. Nagoya Math. J. 132 (1993), 1–36. | MR

[KN] S. Kobayashi and K. Nomizu: Foundations of differential geometry. vol. I, Interscience Publishers, New York London, 1963. | MR

[KTV 1] O. Kowalski, F. Tricerri and L. Vanhecke: New examples of nonhomogeneous Riemannian manifolds whose curvature tensor is that of a Riemannian symmetric space. C.R. Acad. Sci. Paris, Série I, 311 (1990), 355–360. | MR

[KTV 2] O. Kowalski, F. Tricerri and L. Vanhecke: Curvature homogeneous Riemannian manifolds. J. Math. Pures et Appl. 71 (1992), 471–501. | MR

[KTV 3] O. Kowalski, F. Tricerri and L. Vanhecke: Curvature homogeneous spaces with a solvable Lie group as homogeneous model. J. Math. Soc. Japan 44 (1992), 461–484. | DOI | MR

[Lu] Ü. Lumiste: Semi-symmetric submanifold as the second order envelope of symmetric submanifolds. Proc. Estonian Acad. Sci. Phys. Math. No1 35 (1990), 1–8. | Zbl

[N] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor. Tôhoku Math. J. 20 (1968), 46–59. | DOI | MR | Zbl

[Se] K. Sekigawa: On the Riemannian manifolds of the form $B \times _fF$. Kodai Math. Sem. Rep. 26 (1975), 343–347. | DOI | MR

[Si 1] N.S. Sinjukov: On geodesic maps of Riemannian spaces (Russian). Trudy Vsesojuz, Matem. Sjezda (1956), 167–168.

[Si 2] N.S. Sinjukov: Geodesic maps of Riemannian spaces (Russian). Publishing House “Nauka”, Moscow, 1979, pp. 256. | MR

[Sz 1] Z.I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R = 0$, I, Local version. J. Differential Geometry 17 (1982), 531–582. | DOI | MR

[Sz 2] Z.I. Szabó: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R = 0$. II, Global version. Geometriae Dedicata (1985), 65–108. | MR

[Sz 3] Z.I. Szabó: Classification and construction of complete hypersurfaces satisfying $R(X,Y) \cdot R = 0$. Acta Sci. Math. 47 (1984), 321–348. | MR

[T] H. Takagi: An example of Riemannian manifold satisfying $R(X,Y) \cdot R = 0$ but not $\nabla R = 0$. Tôhoku Math. J. 24 (1972), 105–108. | MR

Cité par Sources :