@article{10_21136_CMJ_1996_127265,
author = {Kurzweil, Jaroslav and Jarn{\'\i}k, Ji\v{r}{\'\i}},
title = {Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence},
journal = {Czechoslovak Mathematical Journal},
pages = {1--20},
year = {1996},
volume = {46},
number = {1},
doi = {10.21136/CMJ.1996.127265},
mrnumber = {1371683},
zbl = {0902.26007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1996.127265/}
}
TY - JOUR AU - Kurzweil, Jaroslav AU - Jarník, Jiří TI - Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence JO - Czechoslovak Mathematical Journal PY - 1996 SP - 1 EP - 20 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1996.127265/ DO - 10.21136/CMJ.1996.127265 LA - en ID - 10_21136_CMJ_1996_127265 ER -
%0 Journal Article %A Kurzweil, Jaroslav %A Jarník, Jiří %T Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence %J Czechoslovak Mathematical Journal %D 1996 %P 1-20 %V 46 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1996.127265/ %R 10.21136/CMJ.1996.127265 %G en %F 10_21136_CMJ_1996_127265
Kurzweil, Jaroslav; Jarník, Jiří. Perron type integration on $n$-dimensional intervals as an extension of integration of stepfunctions by strong equiconvergence. Czechoslovak Mathematical Journal, Tome 46 (1996) no. 1, pp. 1-20. doi: 10.21136/CMJ.1996.127265
[1] R. A. Gordon: A general convergence theorem for nonabsolute integrals. J. London Math. Soc. 44 (1991), 301–309. | MR | Zbl
[2] R. A. Gordon: On the equivalence of two convergence theorems for the Henstock integral. Real Anal. Exchange 18 (1992/93), 261–266. | MR
[3] J. Jarník and J. Kurzweil: Perron-type integration on $n$-dimensional intervals and its properties. Czechosl. Math. J. 45 (1995), 79–106. | MR
[4] J. Kurzweil and J. Jarník: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals. Results in Mathematik 21 (1992), 138–151. | DOI | MR
[5] J. Jarník, J. Kurzweil and Š. Schwabik: On Mawhin’s approach to multiple nonabsolutely convergent integrals. Čas. pěst. mat. 108 (1983), 356–380. | MR
[6] P. Y. Lee and T. S. Chew: A better convergence theorem for Henstock integrals. Bull. London Math. Soc. 17 (1985), 557–564. | DOI | MR
[7] P. Y. Lee and T. S. Chew: A Riesz-type definition of the Denjoy integral. Real Anal. Exchange 11 (1985/86), 221–227. | MR
[8] E. J. McShane: Integration. Princeton University Press, 1947. | MR | Zbl
[9] F. Riesz and B. Sz. Nagy: Vorlesungen über Funktionalanalysis. VEB Deutscher Verlag der Wissenschaften Berlin, 1956. | MR
[10] K. Yosida: Functional Analysis. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. | Zbl
Cité par Sources :