The fundamental theorem for the $\nu_1$-integral on more general sets and a corresponding divergence theorem with singularities
Czechoslovak Mathematical Journal, Tome 45 (1995) no. 1, pp. 69-77.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

DOI : 10.21136/CMJ.1995.128511
Classification : 26A39, 26B20
@article{10_21136_CMJ_1995_128511,
     author = {Jurkat, W. B. and Nonnenmacher, D. J. F.},
     title = {The fundamental theorem for the $\nu_1$-integral on more general sets and a corresponding divergence theorem with singularities},
     journal = {Czechoslovak Mathematical Journal},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     doi = {10.21136/CMJ.1995.128511},
     mrnumber = {1314531},
     zbl = {0832.26008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1995.128511/}
}
TY  - JOUR
AU  - Jurkat, W. B.
AU  - Nonnenmacher, D. J. F.
TI  - The fundamental theorem for the $\nu_1$-integral on more general sets and a corresponding divergence theorem with singularities
JO  - Czechoslovak Mathematical Journal
PY  - 1995
SP  - 69
EP  - 77
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1995.128511/
DO  - 10.21136/CMJ.1995.128511
LA  - en
ID  - 10_21136_CMJ_1995_128511
ER  - 
%0 Journal Article
%A Jurkat, W. B.
%A Nonnenmacher, D. J. F.
%T The fundamental theorem for the $\nu_1$-integral on more general sets and a corresponding divergence theorem with singularities
%J Czechoslovak Mathematical Journal
%D 1995
%P 69-77
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1995.128511/
%R 10.21136/CMJ.1995.128511
%G en
%F 10_21136_CMJ_1995_128511
Jurkat, W. B.; Nonnenmacher, D. J. F. The fundamental theorem for the $\nu_1$-integral on more general sets and a corresponding divergence theorem with singularities. Czechoslovak Mathematical Journal, Tome 45 (1995) no. 1, pp. 69-77. doi : 10.21136/CMJ.1995.128511. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1995.128511/

Cité par Sources :