Symmetric porosity of symmetric Cantor sets
Czechoslovak Mathematical Journal, Tome 44 (1994) no. 2, pp. 251-264 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1994.128468
Classification : 26A03, 26A21, 28A05, 28A99
@article{10_21136_CMJ_1994_128468,
     author = {Evans, Michael J. and Humke, Paul D. and Saxe, Karen},
     title = {Symmetric porosity of symmetric {Cantor} sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {251--264},
     year = {1994},
     volume = {44},
     number = {2},
     doi = {10.21136/CMJ.1994.128468},
     mrnumber = {1281021},
     zbl = {0814.26003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128468/}
}
TY  - JOUR
AU  - Evans, Michael J.
AU  - Humke, Paul D.
AU  - Saxe, Karen
TI  - Symmetric porosity of symmetric Cantor sets
JO  - Czechoslovak Mathematical Journal
PY  - 1994
SP  - 251
EP  - 264
VL  - 44
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128468/
DO  - 10.21136/CMJ.1994.128468
LA  - en
ID  - 10_21136_CMJ_1994_128468
ER  - 
%0 Journal Article
%A Evans, Michael J.
%A Humke, Paul D.
%A Saxe, Karen
%T Symmetric porosity of symmetric Cantor sets
%J Czechoslovak Mathematical Journal
%D 1994
%P 251-264
%V 44
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128468/
%R 10.21136/CMJ.1994.128468
%G en
%F 10_21136_CMJ_1994_128468
Evans, Michael J.; Humke, Paul D.; Saxe, Karen. Symmetric porosity of symmetric Cantor sets. Czechoslovak Mathematical Journal, Tome 44 (1994) no. 2, pp. 251-264. doi: 10.21136/CMJ.1994.128468

[1] M. J. Evans: Some theorems whose $\sigma $-porous exceptional sets are not $\sigma $-symmetrically porous. Real Anal. Exch. 17 (1991–92), 809–814. | DOI | MR

[2] M. J. Evans, P. D. Humke, and K. Saxe: A symmetric porosity conjecture of L. Zajíček. Real Anal. Exch. 17 (1991–92), 258–271. | DOI | MR

[3] M. J. Evans, P. D. Humke, and K. Saxe: A characterization of $\sigma $-symmetrically porous symmetric Cantor sets. Proc. Amer. Math. Soc (to appear). | MR

[4] P. D. Humke: A criterion for the nonporosity of a general Cantor set. Proc. Amer. Math. Soc. 111 (1991), 365–372. | DOI | MR | Zbl

[5] P. D. Humke and B. S. Thompson: A porosity characterization of symmetric perfect sets. Classical Real Analysis, AMS Contemporary Mathematics 42 (1985), 81–86. | DOI | MR

[6] M. Repický: An example which discerns porosity and symmetric porosity. Real Anal. Exch. 17 (1991–92), 416–420. | DOI | MR

Cité par Sources :