@article{10_21136_CMJ_1994_128468,
author = {Evans, Michael J. and Humke, Paul D. and Saxe, Karen},
title = {Symmetric porosity of symmetric {Cantor} sets},
journal = {Czechoslovak Mathematical Journal},
pages = {251--264},
year = {1994},
volume = {44},
number = {2},
doi = {10.21136/CMJ.1994.128468},
mrnumber = {1281021},
zbl = {0814.26003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128468/}
}
TY - JOUR AU - Evans, Michael J. AU - Humke, Paul D. AU - Saxe, Karen TI - Symmetric porosity of symmetric Cantor sets JO - Czechoslovak Mathematical Journal PY - 1994 SP - 251 EP - 264 VL - 44 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128468/ DO - 10.21136/CMJ.1994.128468 LA - en ID - 10_21136_CMJ_1994_128468 ER -
%0 Journal Article %A Evans, Michael J. %A Humke, Paul D. %A Saxe, Karen %T Symmetric porosity of symmetric Cantor sets %J Czechoslovak Mathematical Journal %D 1994 %P 251-264 %V 44 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1994.128468/ %R 10.21136/CMJ.1994.128468 %G en %F 10_21136_CMJ_1994_128468
Evans, Michael J.; Humke, Paul D.; Saxe, Karen. Symmetric porosity of symmetric Cantor sets. Czechoslovak Mathematical Journal, Tome 44 (1994) no. 2, pp. 251-264. doi: 10.21136/CMJ.1994.128468
[1] M. J. Evans: Some theorems whose $\sigma $-porous exceptional sets are not $\sigma $-symmetrically porous. Real Anal. Exch. 17 (1991–92), 809–814. | DOI | MR
[2] M. J. Evans, P. D. Humke, and K. Saxe: A symmetric porosity conjecture of L. Zajíček. Real Anal. Exch. 17 (1991–92), 258–271. | DOI | MR
[3] M. J. Evans, P. D. Humke, and K. Saxe: A characterization of $\sigma $-symmetrically porous symmetric Cantor sets. Proc. Amer. Math. Soc (to appear). | MR
[4] P. D. Humke: A criterion for the nonporosity of a general Cantor set. Proc. Amer. Math. Soc. 111 (1991), 365–372. | DOI | MR | Zbl
[5] P. D. Humke and B. S. Thompson: A porosity characterization of symmetric perfect sets. Classical Real Analysis, AMS Contemporary Mathematics 42 (1985), 81–86. | DOI | MR
[6] M. Repický: An example which discerns porosity and symmetric porosity. Real Anal. Exch. 17 (1991–92), 416–420. | DOI | MR
Cité par Sources :