A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$
Czechoslovak Mathematical Journal, Tome 34 (1984) no. 4, pp. 609-618 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1984.101987
Classification : 53A25, 53A35
@article{10_21136_CMJ_1984_101987,
     author = {Thas, Charles},
     title = {A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {609--618},
     year = {1984},
     volume = {34},
     number = {4},
     doi = {10.21136/CMJ.1984.101987},
     mrnumber = {764443},
     zbl = {0565.53009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101987/}
}
TY  - JOUR
AU  - Thas, Charles
TI  - A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$
JO  - Czechoslovak Mathematical Journal
PY  - 1984
SP  - 609
EP  - 618
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101987/
DO  - 10.21136/CMJ.1984.101987
LA  - en
ID  - 10_21136_CMJ_1984_101987
ER  - 
%0 Journal Article
%A Thas, Charles
%T A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$
%J Czechoslovak Mathematical Journal
%D 1984
%P 609-618
%V 34
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101987/
%R 10.21136/CMJ.1984.101987
%G en
%F 10_21136_CMJ_1984_101987
Thas, Charles. A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$. Czechoslovak Mathematical Journal, Tome 34 (1984) no. 4, pp. 609-618. doi: 10.21136/CMJ.1984.101987

[1] Chen B. Y.: Geometry of submanifolds. Marcel Dekker, New York 1973. | MR | Zbl

[2] Obata M.: The Gauss map of a minimal immersion. Journal of differential geometry, vol. 2, nr. 2, 217-223 (1968). | MR

[3] Spivak M.: A comprehensive introduction to differential geometry. (vol.4). Publish or perish inc., Boston (1970). | Zbl

[4] Thas C.: Een (lokale) studie van de (m + 1)-dimensionale variëteiten van de n-dimensionale euklidische ruimte $R^n$ (n ≥ 2m + 1 en m ≥ 1), beschreven door een ééndimensionale familie van m-dimensionale linéaire ruimten. (English summary). Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang XXXVI, nr. 4, 83 pp. (1974).

[5] Thas C.: A Gauss map on hypersurfaces of submanifolds in euclidean spaces. J. Korean Math. Soc., vol. 76, 1, 17-27, (1979). | MR | Zbl

[6] Thas C.: A note on a class of submanifolds of a space form $R^m$ {k). Soochow J. Math., vol. 4, pp. 29-38 (1978). | MR

[7] Thas C.: On submanifolds of a Riemannian manifold M containing a hypersurface which is totally geodesic in M and applications. Resultate der Mathematik, Vol, 5, pp. 1-10, (1983). | MR | Zbl

Cité par Sources :