@article{10_21136_CMJ_1984_101987,
author = {Thas, Charles},
title = {A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$},
journal = {Czechoslovak Mathematical Journal},
pages = {609--618},
year = {1984},
volume = {34},
number = {4},
doi = {10.21136/CMJ.1984.101987},
mrnumber = {764443},
zbl = {0565.53009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101987/}
}
TY - JOUR AU - Thas, Charles TI - A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$ JO - Czechoslovak Mathematical Journal PY - 1984 SP - 609 EP - 618 VL - 34 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101987/ DO - 10.21136/CMJ.1984.101987 LA - en ID - 10_21136_CMJ_1984_101987 ER -
%0 Journal Article %A Thas, Charles %T A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$ %J Czechoslovak Mathematical Journal %D 1984 %P 609-618 %V 34 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101987/ %R 10.21136/CMJ.1984.101987 %G en %F 10_21136_CMJ_1984_101987
Thas, Charles. A theory on non-developable generalized ruled surfaces in the elliptic space $E^m$. Czechoslovak Mathematical Journal, Tome 34 (1984) no. 4, pp. 609-618. doi: 10.21136/CMJ.1984.101987
[1] Chen B. Y.: Geometry of submanifolds. Marcel Dekker, New York 1973. | MR | Zbl
[2] Obata M.: The Gauss map of a minimal immersion. Journal of differential geometry, vol. 2, nr. 2, 217-223 (1968). | MR
[3] Spivak M.: A comprehensive introduction to differential geometry. (vol.4). Publish or perish inc., Boston (1970). | Zbl
[4] Thas C.: Een (lokale) studie van de (m + 1)-dimensionale variëteiten van de n-dimensionale euklidische ruimte $R^n$ (n ≥ 2m + 1 en m ≥ 1), beschreven door een ééndimensionale familie van m-dimensionale linéaire ruimten. (English summary). Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang XXXVI, nr. 4, 83 pp. (1974).
[5] Thas C.: A Gauss map on hypersurfaces of submanifolds in euclidean spaces. J. Korean Math. Soc., vol. 76, 1, 17-27, (1979). | MR | Zbl
[6] Thas C.: A note on a class of submanifolds of a space form $R^m$ {k). Soochow J. Math., vol. 4, pp. 29-38 (1978). | MR
[7] Thas C.: On submanifolds of a Riemannian manifold M containing a hypersurface which is totally geodesic in M and applications. Resultate der Mathematik, Vol, 5, pp. 1-10, (1983). | MR | Zbl
Cité par Sources :