Differentiable manifolds with generalized boundary
Czechoslovak Mathematical Journal, Tome 34 (1984) no. 1, pp. 46-63 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1984.101925
Classification : 58A05, 58B05, 58C15, 58C20
@article{10_21136_CMJ_1984_101925,
     author = {Graham, George},
     title = {Differentiable manifolds with generalized boundary},
     journal = {Czechoslovak Mathematical Journal},
     pages = {46--63},
     year = {1984},
     volume = {34},
     number = {1},
     doi = {10.21136/CMJ.1984.101925},
     mrnumber = {731979},
     zbl = {0543.58009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101925/}
}
TY  - JOUR
AU  - Graham, George
TI  - Differentiable manifolds with generalized boundary
JO  - Czechoslovak Mathematical Journal
PY  - 1984
SP  - 46
EP  - 63
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101925/
DO  - 10.21136/CMJ.1984.101925
LA  - en
ID  - 10_21136_CMJ_1984_101925
ER  - 
%0 Journal Article
%A Graham, George
%T Differentiable manifolds with generalized boundary
%J Czechoslovak Mathematical Journal
%D 1984
%P 46-63
%V 34
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1984.101925/
%R 10.21136/CMJ.1984.101925
%G en
%F 10_21136_CMJ_1984_101925
Graham, George. Differentiable manifolds with generalized boundary. Czechoslovak Mathematical Journal, Tome 34 (1984) no. 1, pp. 46-63. doi: 10.21136/CMJ.1984.101925

[1] Banach S.: Théorie des Opérations Linéaires. Warsaw, 1932. | Zbl

[2] Brockett R. W.: Lie algebras and Lie groups in control theory. Geometric Methods in System Theory, Reidel, Boston (1973), 43-82. | Zbl

[3] Dieudonné J.: Foundations of Modern Analysis. Academic Press, New York and London (1960). | MR

[4] Graham G.: Manifolds with Generalized Boundary and Diflferentiable Semigroups. Ph.D. Thesis, University of Houston, 1979.

[5] Graham G.: The Lie theory of differentiable semigroups. (to appear). | MR

[6] Graves L. M.: Some mapping theorems. Duke Math. J. 17 (1950), 111-114. | DOI | MR | Zbl

[7] Hille E., Phillips R. S.: Functional Analysis and Semigroups. Am. Math. Soc, Providence (1957). | MR | Zbl

[8] Hirschorn R.: Topological semigroups, sets of generators and controllability. Duke Math. J., 40 (1973), 937-947. | MR | Zbl

[9] Jurdjevic V., Sussmann H. J.: Control systems on Lie groups. Jour. Differential Eq. 12 (1972), 313-329. | DOI | MR | Zbl

[10] Kelley J. L.: General Topology. Graduate Texts in Mathematics, vol. 27, Springer-Verlag, New York, Heidelberg, and Berlin. | MR | Zbl

[11] Lang S.: Introduction to differentiable manifolds. Interscience, New York (1967). | MR

[12] Leach E. В.: А note on inverse function theorems. Proc. Amer. Math. Soc. 72 (1961), 694 to 697. | DOI | MR | Zbl

[13] Mostert P. S., Shields A. L.: Semigroups with identity on a manifold. Trans. Am. Math. Soc., 91 (1959), 380-389. | DOI | MR | Zbl

[14] Nashed M. Z.: Differentiability and related properties of nonlinear operators: Some aspects of the role of differentials in nonlinear functional analysis. Nonlinear Functional Analysis and Applications, L. B. Rail, ed., Academic Press, New York (1971), 109-309. | MR

[15] Nashed M. Z.: Generalized inverse mapping theorems and related applications of generalized inverses in nonlinear analysis. Nonlinear Equations in Abstract Spaces, V. Lakshmikantham, ed.. Academic Press, New York (1978), 217-252. | MR | Zbl

[16] Nijenhuis A.: Strong derivatives and inverse mappings. Amer. Math. Monthly 81 (1974), 969-981. | DOI | MR | Zbl

[17] Vainberg M. M.: Variational Methods for the Study of Nonlinear Operators. Holden-Day, San Francisco, (1964). | MR | Zbl

[18] Whitney H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math. Soc. 36 (1934), 63-89. | DOI | MR | Zbl

Cité par Sources :