Duality theory for linear $n$-th order integro-differential operators with domain in $L^p_m$ determined by interface side conditions
Czechoslovak Mathematical Journal, Tome 32 (1982) no. 2, pp. 183-196.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

DOI : 10.21136/CMJ.1982.101795
Classification : 47E05
@article{10_21136_CMJ_1982_101795,
     author = {Brown, Richard C. and Tvrd\'y, Milan and Vejvoda, Otto},
     title = {Duality theory for linear $n$-th order integro-differential operators with domain in $L^p_m$ determined by interface side conditions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {183--196},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1982},
     doi = {10.21136/CMJ.1982.101795},
     mrnumber = {654055},
     zbl = {0505.45003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1982.101795/}
}
TY  - JOUR
AU  - Brown, Richard C.
AU  - Tvrdý, Milan
AU  - Vejvoda, Otto
TI  - Duality theory for linear $n$-th order integro-differential operators with domain in $L^p_m$ determined by interface side conditions
JO  - Czechoslovak Mathematical Journal
PY  - 1982
SP  - 183
EP  - 196
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1982.101795/
DO  - 10.21136/CMJ.1982.101795
LA  - en
ID  - 10_21136_CMJ_1982_101795
ER  - 
%0 Journal Article
%A Brown, Richard C.
%A Tvrdý, Milan
%A Vejvoda, Otto
%T Duality theory for linear $n$-th order integro-differential operators with domain in $L^p_m$ determined by interface side conditions
%J Czechoslovak Mathematical Journal
%D 1982
%P 183-196
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1982.101795/
%R 10.21136/CMJ.1982.101795
%G en
%F 10_21136_CMJ_1982_101795
Brown, Richard C.; Tvrdý, Milan; Vejvoda, Otto. Duality theory for linear $n$-th order integro-differential operators with domain in $L^p_m$ determined by interface side conditions. Czechoslovak Mathematical Journal, Tome 32 (1982) no. 2, pp. 183-196. doi : 10.21136/CMJ.1982.101795. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1982.101795/

Cité par Sources :