On $E$-sequentially regular spaces
Czechoslovak Mathematical Journal, Tome 26 (1976) no. 4, pp. 604-612 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

DOI : 10.21136/CMJ.1976.101431
Classification : 54A20
@article{10_21136_CMJ_1976_101431,
     author = {Fri\v{c}, Roman},
     title = {On $E$-sequentially regular spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {604--612},
     year = {1976},
     volume = {26},
     number = {4},
     doi = {10.21136/CMJ.1976.101431},
     mrnumber = {0428240},
     zbl = {0339.54005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1976.101431/}
}
TY  - JOUR
AU  - Frič, Roman
TI  - On $E$-sequentially regular spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1976
SP  - 604
EP  - 612
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1976.101431/
DO  - 10.21136/CMJ.1976.101431
LA  - en
ID  - 10_21136_CMJ_1976_101431
ER  - 
%0 Journal Article
%A Frič, Roman
%T On $E$-sequentially regular spaces
%J Czechoslovak Mathematical Journal
%D 1976
%P 604-612
%V 26
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1976.101431/
%R 10.21136/CMJ.1976.101431
%G en
%F 10_21136_CMJ_1976_101431
Frič, Roman. On $E$-sequentially regular spaces. Czechoslovak Mathematical Journal, Tome 26 (1976) no. 4, pp. 604-612. doi: 10.21136/CMJ.1976.101431

[1] S. P. Franklin: Spaces in which sequences suffice. Fund. Math. 57 (1965), 107-115. | DOI | MR | Zbl

[2] R. Frič: Sequential envelope and subspaces of the Čech-Stone compactification. General Topology and its Relation to Modern Analysis and Algebra, III (Proc. Third Prague Topological Sympos., 1971). Academia, Prague, 1972, 123-126. | MR

[3] R. Frič: Regularity and extension of mappings in sequential spaces. Comment. Math. Univ. Carolinae 15 (1974), 161-171. | MR

[4] R. Frič V. Koutník: On sequentially complete spaces. To appear. | MR

[5] V. Koutník: On sequentially regular convergence spaces. Czechoslovak Math. J. 17 (92) 1967, 232-247. | MR

[6] P. Kratochvíl: Convergence of multisequences and its application to probability measure theory. (Czech). Ph. D. Thesis, MÚ ČSAV, Praha, Czechoslovakia.

[7] J. Novák: On convergence spaces and their sequential envelopes. Czechoslovak Math. J. 15 (90) 1965, 74-100. | MR

[8] J. Novák: On sequential envelopes defined by means of certain classes of continuous functions. Czechoslovak Math. J. 18 (93) 1968, 450-465. | MR

Cité par Sources :