@article{10_21136_CMJ_1970_100990,
author = {Dobrakov, Ivan},
title = {On integration in {Banach} spaces, {II}},
journal = {Czechoslovak Mathematical Journal},
pages = {680--695},
year = {1970},
volume = {20},
number = {4},
doi = {10.21136/CMJ.1970.100990},
mrnumber = {0365139},
zbl = {0224.46050},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1970.100990/}
}
Dobrakov, Ivan. On integration in Banach spaces, II. Czechoslovak Mathematical Journal, Tome 20 (1970) no. 4, pp. 680-695. doi: 10.21136/CMJ.1970.100990
[1] Bartle R. G.: A general bilinear vector integral. Studia Math. 15 (1956), 337-352. | DOI | MR | Zbl
[2] Bessaga C., Pelczyňski A.: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17(1958), 151-164. | DOI | MR
[3] Dinculeanu N.: Vector measures. VEB Deutscher Verlag der Wissenschaften, Berlin 1966. | MR | Zbl
[4] Dobrakov I.: On integration in Banach spaces, I. Czech. Math. J. 20 (1970), 511 - 536. | MR | Zbl
[5] Dobrakov I.: On representation of linear operators on $С\sb{0} (T, X)$. Czech. Math. J. (To appear.)
[6] Dunford N., Schwartz J. T.: Linear operators, part I. Interscience, New York 1958.
[7] Gould G. G.: Integration over vector-valued measures. Proc. London Math. Soc. (3) 15 (1965), 193-225. | MR | Zbl
[8] Hackenbroch W.: Integration vektorwertigen Funktionen nach operatorwertigen Maßen. Math. Zeitschr. 105 (1968), 327-344. | DOI | MR
[9] Halmos P. R.: Measure theory. D. Van Nostrand, New York 1950. | MR | Zbl
[10] Kluvánek I.: Some generalizations of the Riesz-Kakutani theorem. (Russian), Czech. Math. J. 13 (88) (1963), 89-113. | MR
[11] Musielak J., Orlicz W.: Notes on the theory of integral I. Bull. Acad. Polonaise Scien. 15 (1967), 329-337. | MR | Zbl
[12] Musielak J., Orlicz W.: Notes on the theory of integral II. Bull. Acad. Polonaise Scien, 15 (1967), 723-730. | MR | Zbl
[13] Musielak J., Orlicz W.: Notes on the theory of integral III. Bull. Acad. Polonaise Scien. 16 (1968), 317-326. | MR | Zbl
[14] Orlicz W.: On spaces $L\sp{*\varphi }$ based on the notion of finitely additive integral. Prace Mat. 12 (1968), 99-113. | MR
[15] Pietsch A.: Nukleare lokalkonvexe Räume. Akademie-Verlag, Berlin 1965. | MR | Zbl
[16] Zaanen A. C.: Linear analysis. P. Noordhoff, Groningen, and Interscience Publ., New York 1953. | MR | Zbl
Cité par Sources :