Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{10_21136_CMJ_1965_100680, author = {Brunovsk\'y, Pavol}, title = {A condition of the existence of an universal best $\varepsilon$-stabilizing control}, journal = {Czechoslovak Mathematical Journal}, pages = {370--377}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {1965}, doi = {10.21136/CMJ.1965.100680}, mrnumber = {0181519}, zbl = {0154.10101}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1965.100680/} }
TY - JOUR AU - Brunovský, Pavol TI - A condition of the existence of an universal best $\varepsilon$-stabilizing control JO - Czechoslovak Mathematical Journal PY - 1965 SP - 370 EP - 377 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1965.100680/ DO - 10.21136/CMJ.1965.100680 LA - en ID - 10_21136_CMJ_1965_100680 ER -
%0 Journal Article %A Brunovský, Pavol %T A condition of the existence of an universal best $\varepsilon$-stabilizing control %J Czechoslovak Mathematical Journal %D 1965 %P 370-377 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1965.100680/ %R 10.21136/CMJ.1965.100680 %G en %F 10_21136_CMJ_1965_100680
Brunovský, Pavol. A condition of the existence of an universal best $\varepsilon$-stabilizing control. Czechoslovak Mathematical Journal, Tome 15 (1965) no. 3, pp. 370-377. doi : 10.21136/CMJ.1965.100680. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1965.100680/
Cité par Sources :