On a generalization of the Lebesgue integral in $E_m$
Czechoslovak Mathematical Journal, Tome 15 (1965) no. 2, pp. 261-269
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{10_21136_CMJ_1965_100668,
author = {Ma\v{r}{\'\i}k, Jan and Matyska, Ji\v{r}{\'\i}},
title = {On a generalization of the {Lebesgue} integral in $E_m$},
journal = {Czechoslovak Mathematical Journal},
pages = {261--269},
year = {1965},
volume = {15},
number = {2},
doi = {10.21136/CMJ.1965.100668},
mrnumber = {0177093},
zbl = {0192.14503},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1965.100668/}
}
TY - JOUR AU - Mařík, Jan AU - Matyska, Jiří TI - On a generalization of the Lebesgue integral in $E_m$ JO - Czechoslovak Mathematical Journal PY - 1965 SP - 261 EP - 269 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1965.100668/ DO - 10.21136/CMJ.1965.100668 LA - en ID - 10_21136_CMJ_1965_100668 ER -
%0 Journal Article %A Mařík, Jan %A Matyska, Jiří %T On a generalization of the Lebesgue integral in $E_m$ %J Czechoslovak Mathematical Journal %D 1965 %P 261-269 %V 15 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.1965.100668/ %R 10.21136/CMJ.1965.100668 %G en %F 10_21136_CMJ_1965_100668
Mařík, Jan; Matyska, Jiří. On a generalization of the Lebesgue integral in $E_m$. Czechoslovak Mathematical Journal, Tome 15 (1965) no. 2, pp. 261-269. doi: 10.21136/CMJ.1965.100668
[1] J. Mařík: The surface integral. Czech. Math. J., 6 (81), 1956, 522-558. | MR
[2] J. Holec J. Mařík: Continuous additive mappings. Czech. Math. J., 15 (90), 1965, 237-243. | MR
[3] J. Mařík: Extensions of additive mappings. Czech. Math. J., 15 (90), 1965, 244-252. | MR
[4] K. Karták J. Mařík: A non-absolutely convergent integral in $E_m$, and the theorem of Gauss. Czech. Math. J., 15 (90), 1965, 253-260. | MR
[5] L. H. Loomis H. Whitney: An inequality related to the isoperimetric inequality. Bull. Amer. Math. Soc., 55 (1949), 961-962. | DOI | MR
Cité par Sources :