Density of solutions to quadratic congruences
Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 439-455
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A classical result in number theory is Dirichlet's theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly $k$ prime factors for $k>1$. Building upon a proof by E. M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree $n\leq x$ with $k$ prime factors such that a fixed quadratic equation has exactly $2^k$ solutions modulo $n$.
A classical result in number theory is Dirichlet's theorem on the density of primes in an arithmetic progression. We prove a similar result for numbers with exactly $k$ prime factors for $k>1$. Building upon a proof by E. M. Wright in 1954, we compute the natural density of such numbers where each prime satisfies a congruence condition. As an application, we obtain the density of squarefree $n\leq x$ with $k$ prime factors such that a fixed quadratic equation has exactly $2^k$ solutions modulo $n$.
DOI : 10.21136/CMJ.0.0712-15
Classification : 11B25, 11D45, 11N37
Keywords: Dirichlet's theorem; asymptotic density; primes in arithmetic progression; squarefree number
@article{10_21136_CMJ_0_0712_15,
     author = {Prabhu, Neha},
     title = {Density of solutions to quadratic congruences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {439--455},
     year = {2017},
     volume = {67},
     number = {2},
     doi = {10.21136/CMJ.0.0712-15},
     mrnumber = {3661052},
     zbl = {06738530},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.0.0712-15/}
}
TY  - JOUR
AU  - Prabhu, Neha
TI  - Density of solutions to quadratic congruences
JO  - Czechoslovak Mathematical Journal
PY  - 2017
SP  - 439
EP  - 455
VL  - 67
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.0.0712-15/
DO  - 10.21136/CMJ.0.0712-15
LA  - en
ID  - 10_21136_CMJ_0_0712_15
ER  - 
%0 Journal Article
%A Prabhu, Neha
%T Density of solutions to quadratic congruences
%J Czechoslovak Mathematical Journal
%D 2017
%P 439-455
%V 67
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.0.0712-15/
%R 10.21136/CMJ.0.0712-15
%G en
%F 10_21136_CMJ_0_0712_15
Prabhu, Neha. Density of solutions to quadratic congruences. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 439-455. doi: 10.21136/CMJ.0.0712-15

[1] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (2008). | MR | JFM

[2] Kornblum, H., Landau, E.: Über die Primfunktionen in einer arithmetischen Progression. Math. Zeitschr. 5 (1919), 100-111 German. | DOI | MR | JFM

[3] Landau, E.: Sur quelques problèmes relatifs à la distribution des nombres premiers. S. M. F. Bull. 28 (1900), 25-38 French. | MR | JFM

[4] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge (2007). | DOI | MR | JFM

[5] Pomerance, C.: On the distribution of amicable numbers. J. Reine Angew. Math. 293/294 (1977), 217-222. | DOI | MR | JFM

[6] Ribenboim, P.: The New Book of Prime Number Records. Springer, New York (1996). | DOI | MR | JFM

[7] Wright, E. M.: A simple proof of a theorem of Landau. Proc. Edinb. Math. Soc., II. Ser. 9 (1954), 87-90. | DOI | MR | JFM

Cité par Sources :