Keywords: Dirichlet's theorem; asymptotic density; primes in arithmetic progression; squarefree number
@article{10_21136_CMJ_0_0712_15,
author = {Prabhu, Neha},
title = {Density of solutions to quadratic congruences},
journal = {Czechoslovak Mathematical Journal},
pages = {439--455},
year = {2017},
volume = {67},
number = {2},
doi = {10.21136/CMJ.0.0712-15},
mrnumber = {3661052},
zbl = {06738530},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.0.0712-15/}
}
Prabhu, Neha. Density of solutions to quadratic congruences. Czechoslovak Mathematical Journal, Tome 67 (2017) no. 2, pp. 439-455. doi: 10.21136/CMJ.0.0712-15
[1] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Oxford University Press, Oxford (2008). | MR | JFM
[2] Kornblum, H., Landau, E.: Über die Primfunktionen in einer arithmetischen Progression. Math. Zeitschr. 5 (1919), 100-111 German. | DOI | MR | JFM
[3] Landau, E.: Sur quelques problèmes relatifs à la distribution des nombres premiers. S. M. F. Bull. 28 (1900), 25-38 French. | MR | JFM
[4] Montgomery, H. L., Vaughan, R. C.: Multiplicative Number Theory. I. Classical Theory. Cambridge Studies in Advanced Mathematics 97, Cambridge University Press, Cambridge (2007). | DOI | MR | JFM
[5] Pomerance, C.: On the distribution of amicable numbers. J. Reine Angew. Math. 293/294 (1977), 217-222. | DOI | MR | JFM
[6] Ribenboim, P.: The New Book of Prime Number Records. Springer, New York (1996). | DOI | MR | JFM
[7] Wright, E. M.: A simple proof of a theorem of Landau. Proc. Edinb. Math. Soc., II. Ser. 9 (1954), 87-90. | DOI | MR | JFM
Cité par Sources :