Partial sum of eigenvalues of random graphs
Applications of Mathematics, Tome 65 (2020) no. 5, pp. 609-618.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a graph on $n$ vertices and let $\lambda _{1}\geq \lambda _{2}\geq \ldots \geq \lambda _{n}$ be the eigenvalues of its adjacency matrix. For random graphs we investigate the sum of eigenvalues $s_{k}=\sum _{i=1}^{k}\lambda _{i}$, for $1\leq k\leq n$, and show that a typical graph has $s_{k}\leq (e(G)+k^{2})/(0.99n)^{1/2}$, where $e(G)$ is the number of edges of $G$. We also show bounds for the sum of eigenvalues within a given range in terms of the number of edges. The approach for the proofs was first used in Rocha (2020) to bound the partial sum of eigenvalues of the Laplacian matrix.
DOI : 10.21136/AM.2020.0352-19
Classification : 05C50, 15A18
Keywords: sum of eigenvalues; graph energy; random matrix
@article{10_21136_AM_2020_0352_19,
     author = {Rocha, Israel},
     title = {Partial sum of eigenvalues of random graphs},
     journal = {Applications of Mathematics},
     pages = {609--618},
     publisher = {mathdoc},
     volume = {65},
     number = {5},
     year = {2020},
     doi = {10.21136/AM.2020.0352-19},
     mrnumber = {4160784},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0352-19/}
}
TY  - JOUR
AU  - Rocha, Israel
TI  - Partial sum of eigenvalues of random graphs
JO  - Applications of Mathematics
PY  - 2020
SP  - 609
EP  - 618
VL  - 65
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0352-19/
DO  - 10.21136/AM.2020.0352-19
LA  - en
ID  - 10_21136_AM_2020_0352_19
ER  - 
%0 Journal Article
%A Rocha, Israel
%T Partial sum of eigenvalues of random graphs
%J Applications of Mathematics
%D 2020
%P 609-618
%V 65
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0352-19/
%R 10.21136/AM.2020.0352-19
%G en
%F 10_21136_AM_2020_0352_19
Rocha, Israel. Partial sum of eigenvalues of random graphs. Applications of Mathematics, Tome 65 (2020) no. 5, pp. 609-618. doi : 10.21136/AM.2020.0352-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0352-19/

Cité par Sources :