Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem
Applications of Mathematics, Tome 65 (2020) no. 6, pp. 807-827.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The time-ordered exponential of a time-dependent matrix $\mathsf {A}(t)$ is defined as the function of $\mathsf {A}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf {A}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast $. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast $-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green's function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples.
DOI : 10.21136/AM.2020.0342-19
Classification : 35A24, 47B36, 65D15, 65F10
Keywords: time-ordering; matrix differential equation; time-ordered exponential; Lanczos algorithm; fundamental solution
@article{10_21136_AM_2020_0342_19,
     author = {Giscard, Pierre-Louis and Pozza, Stefano},
     title = {Lanczos-like algorithm for the time-ordered exponential: {The} $\ast $-inverse problem},
     journal = {Applications of Mathematics},
     pages = {807--827},
     publisher = {mathdoc},
     volume = {65},
     number = {6},
     year = {2020},
     doi = {10.21136/AM.2020.0342-19},
     mrnumber = {4191370},
     zbl = {07285958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0342-19/}
}
TY  - JOUR
AU  - Giscard, Pierre-Louis
AU  - Pozza, Stefano
TI  - Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem
JO  - Applications of Mathematics
PY  - 2020
SP  - 807
EP  - 827
VL  - 65
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0342-19/
DO  - 10.21136/AM.2020.0342-19
LA  - en
ID  - 10_21136_AM_2020_0342_19
ER  - 
%0 Journal Article
%A Giscard, Pierre-Louis
%A Pozza, Stefano
%T Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem
%J Applications of Mathematics
%D 2020
%P 807-827
%V 65
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0342-19/
%R 10.21136/AM.2020.0342-19
%G en
%F 10_21136_AM_2020_0342_19
Giscard, Pierre-Louis; Pozza, Stefano. Lanczos-like algorithm for the time-ordered exponential: The $\ast $-inverse problem. Applications of Mathematics, Tome 65 (2020) no. 6, pp. 807-827. doi : 10.21136/AM.2020.0342-19. http://geodesic.mathdoc.fr/articles/10.21136/AM.2020.0342-19/

Cité par Sources :