Keywords: finite element method; elliptic problems; semiregular elements; maximum angle condition; variational crimes
@article{10_21136_AM_1996_134332,
author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
title = {Finite element variational crimes in the case of semiregular elements},
journal = {Applications of Mathematics},
pages = {367--398},
year = {1996},
volume = {41},
number = {5},
doi = {10.21136/AM.1996.134332},
mrnumber = {1404547},
zbl = {0870.65094},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/}
}
TY - JOUR AU - Ženíšek, Alexander TI - Finite element variational crimes in the case of semiregular elements JO - Applications of Mathematics PY - 1996 SP - 367 EP - 398 VL - 41 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/ DO - 10.21136/AM.1996.134332 LA - en ID - 10_21136_AM_1996_134332 ER -
Ženíšek, Alexander. Finite element variational crimes in the case of semiregular elements. Applications of Mathematics, Tome 41 (1996) no. 5, pp. 367-398. doi: 10.21136/AM.1996.134332
[1] I. Babuška, and A.K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226. | DOI | MR
[2] M. Feistauer, and A. Ženíšek: Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987), 451–475. | DOI | MR
[3] P. Jamet: Estimations d’erreur pour des éléments finis presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43–61. | MR
[4] M. Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991), 223–232. | MR
[5] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques. Academia-Masson, Prague-Paris, 1967. | MR
[6] L.A. Oganesian, and L.A. Rukhovec: Variational-Difference Methods for the Solution of Elliptic Problems. Izd. Akad. Nauk ArSSR, Jerevan, 1979. (Russian)
[7] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990. | MR
[8] A. Ženíšek, and M. Vanmaele: The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math. 72 (1995), 123–141. | DOI | MR
Cité par Sources :