Finite element variational crimes in the case of semiregular elements
Applications of Mathematics, Tome 41 (1996) no. 5, pp. 367-398 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain $\Omega $ whose boundary $\partial \Omega $ is formed by two circles $\Gamma _1$, $\Gamma _2$ with the same center $S_0$ and radii $R_1$, $R_2=R_1+\varrho $, where $\varrho \ll R_1$. On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for $u=0$ are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus triangles obeying only the maximum angle condition and narrow quadrilaterals are used. The restrictions of test functions on triangles are linear functions while on quadrilaterals they are four-node isoparametric functions. Both the effect of numerical integration and that of approximation of the boundary are analyzed. The rate of convergence $O(h)$ in the norm of the Sobolev space $H^1$ is proved under the following conditions: 1. the
The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain $\Omega $ whose boundary $\partial \Omega $ is formed by two circles $\Gamma _1$, $\Gamma _2$ with the same center $S_0$ and radii $R_1$, $R_2=R_1+\varrho $, where $\varrho \ll R_1$. On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for $u=0$ are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus triangles obeying only the maximum angle condition and narrow quadrilaterals are used. The restrictions of test functions on triangles are linear functions while on quadrilaterals they are four-node isoparametric functions. Both the effect of numerical integration and that of approximation of the boundary are analyzed. The rate of convergence $O(h)$ in the norm of the Sobolev space $H^1$ is proved under the following conditions: 1. the
DOI : 10.21136/AM.1996.134332
Classification : 65N30
Keywords: finite element method; elliptic problems; semiregular elements; maximum angle condition; variational crimes
@article{10_21136_AM_1996_134332,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {Finite element variational crimes in the case of semiregular elements},
     journal = {Applications of Mathematics},
     pages = {367--398},
     year = {1996},
     volume = {41},
     number = {5},
     doi = {10.21136/AM.1996.134332},
     mrnumber = {1404547},
     zbl = {0870.65094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/}
}
TY  - JOUR
AU  - Ženíšek, Alexander
TI  - Finite element variational crimes in the case of semiregular elements
JO  - Applications of Mathematics
PY  - 1996
SP  - 367
EP  - 398
VL  - 41
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/
DO  - 10.21136/AM.1996.134332
LA  - en
ID  - 10_21136_AM_1996_134332
ER  - 
%0 Journal Article
%A Ženíšek, Alexander
%T Finite element variational crimes in the case of semiregular elements
%J Applications of Mathematics
%D 1996
%P 367-398
%V 41
%N 5
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/
%R 10.21136/AM.1996.134332
%G en
%F 10_21136_AM_1996_134332
Ženíšek, Alexander. Finite element variational crimes in the case of semiregular elements. Applications of Mathematics, Tome 41 (1996) no. 5, pp. 367-398. doi: 10.21136/AM.1996.134332

[1] I. Babuška, and A.K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226. | DOI | MR

[2] M. Feistauer, and A. Ženíšek: Finite element solution of nonlinear elliptic problems. Numer. Math. 50 (1987), 451–475. | DOI | MR

[3] P. Jamet: Estimations d’erreur pour des éléments finis presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43–61. | MR

[4] M. Křížek: On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991), 223–232. | MR

[5] J. Nečas: Les Méthodes Directes en Théorie des Equations Elliptiques. Academia-Masson, Prague-Paris, 1967. | MR

[6] L.A. Oganesian, and L.A. Rukhovec: Variational-Difference Methods for the Solution of Elliptic Problems. Izd. Akad. Nauk ArSSR, Jerevan, 1979. (Russian)

[7] A. Ženíšek: Nonlinear Elliptic and Evolution Problems and Their Finite Element Approximations. Academic Press, London, 1990. | MR

[8] A. Ženíšek, and M. Vanmaele: The interpolation theorem for narrow quadrilateral isoparametric finite elements. Numer. Math. 72 (1995), 123–141. | DOI | MR

Cité par Sources :