How to recover the gradient of linear elements on nonuniform triangulations
Applications of Mathematics, Tome 41 (1996) no. 4, pp. 241-267.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We propose and examine a simple averaging formula for the gradient of linear finite elements in $R^d$ whose interpolation order in the $L^q$-norm is $\mathcal O(h^2)$ for $d2q$ and nonuniform triangulations. For elliptic problems in $R^2$ we derive an interior superconvergence for the averaged gradient over quasiuniform triangulations. A numerical example is presented.
DOI : 10.21136/AM.1996.134325
Classification : 65N15, 65N30
Keywords: weighted averaged gradient; linear elements; nonuniform triangulations; superapproximation; superconvergence
@article{10_21136_AM_1996_134325,
     author = {Hlav\'a\v{c}ek, Ivan and K\v{r}{\'\i}\v{z}ek, Michal and Pi\v{s}tora, Vladislav},
     title = {How to recover the gradient of linear elements on nonuniform triangulations},
     journal = {Applications of Mathematics},
     pages = {241--267},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {1996},
     doi = {10.21136/AM.1996.134325},
     mrnumber = {1395685},
     zbl = {0870.65093},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134325/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
AU  - Křížek, Michal
AU  - Pištora, Vladislav
TI  - How to recover the gradient of linear elements on nonuniform triangulations
JO  - Applications of Mathematics
PY  - 1996
SP  - 241
EP  - 267
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134325/
DO  - 10.21136/AM.1996.134325
LA  - en
ID  - 10_21136_AM_1996_134325
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%A Křížek, Michal
%A Pištora, Vladislav
%T How to recover the gradient of linear elements on nonuniform triangulations
%J Applications of Mathematics
%D 1996
%P 241-267
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134325/
%R 10.21136/AM.1996.134325
%G en
%F 10_21136_AM_1996_134325
Hlaváček, Ivan; Křížek, Michal; Pištora, Vladislav. How to recover the gradient of linear elements on nonuniform triangulations. Applications of Mathematics, Tome 41 (1996) no. 4, pp. 241-267. doi : 10.21136/AM.1996.134325. http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134325/

Cité par Sources :