Cauchy problem for the non-newtonian viscous incompressible fluid
Applications of Mathematics, Tome 41 (1996) no. 3, pp. 169-201.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the Cauchy problem for the non-Newtonian incompressible fluid with the viscous part of the stress tensor $\tau ^V(\mathbb{e}) = \tau (\mathbb{e}) - 2\mu _1 \Delta \mathbb{e}$, where the nonlinear function $\tau (\mathbb{e})$ satisfies $\tau _{ij}(\mathbb{e})e_{ij} \ge c|\mathbb{e}|^p$ or $\tau _{ij}(\mathbb{e})e_{ij} \ge c(|\mathbb{e}|^2+|\mathbb{e}|^p)$. First, the model for the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is proved for $p > 1$ for both models. Then, under vanishing higher viscosity $\mu _1$, the Cauchy problem for the monopolar fluid is considered. For the first model the existence of the weak solution is proved for $p > \frac{3n}{n+2}$, its uniqueness and regularity for $p \ge 1 + \frac{2n}{n+2}$. In the case of the second model the existence of the weak solution is proved for $p>1$.
DOI : 10.21136/AM.1996.134320
Classification : 35Q30, 76A05
Keywords: non-Newtonian incompressible fluids; Navier-Stokes equations; Cauchy problem
@article{10_21136_AM_1996_134320,
     author = {Pokorn\'y, Milan},
     title = {Cauchy problem for the non-newtonian viscous incompressible fluid},
     journal = {Applications of Mathematics},
     pages = {169--201},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {1996},
     doi = {10.21136/AM.1996.134320},
     mrnumber = {1382464},
     zbl = {0863.76003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134320/}
}
TY  - JOUR
AU  - Pokorný, Milan
TI  - Cauchy problem for the non-newtonian viscous incompressible fluid
JO  - Applications of Mathematics
PY  - 1996
SP  - 169
EP  - 201
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134320/
DO  - 10.21136/AM.1996.134320
LA  - en
ID  - 10_21136_AM_1996_134320
ER  - 
%0 Journal Article
%A Pokorný, Milan
%T Cauchy problem for the non-newtonian viscous incompressible fluid
%J Applications of Mathematics
%D 1996
%P 169-201
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134320/
%R 10.21136/AM.1996.134320
%G en
%F 10_21136_AM_1996_134320
Pokorný, Milan. Cauchy problem for the non-newtonian viscous incompressible fluid. Applications of Mathematics, Tome 41 (1996) no. 3, pp. 169-201. doi : 10.21136/AM.1996.134320. http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134320/

Cité par Sources :