On the solvability of some multi-point boundary value problems
Applications of Mathematics, Tome 41 (1996) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f\colon [0,1]\times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory’s conditions and let $e(t)\in L^{1}[0,1]$. Let $\xi _{i}, \tau _{j}\in (0,1)$, $ c_{i},a_{j}\in \mathbb{R}$, all of the $c_{i}$’s, (respectively, $a_{j}$’s) having the same sign, $i=1,2,\ldots ,m-2$, $j=1,2,\ldots ,n-2$, $0 \xi _{1}\xi _{2}\ldots \xi _{m-2}1$, $0 \tau _{1}\tau _{2}\ldots \tau _{n-2}1$ be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems \begin{align*} x^{\prime\prime}(t)=f(t, x(t),x^{\prime}(t))+e(t),\qquad t\in (0,1)\tag{E} \\ x(0)=\sum\limits_{i=1}^{m-2} c_{i}x^{\prime}(\xi_{i}),\qquad x(1)=\sum\limits_{j=1}^{n-2} a_{j}x(\tau_{j}) \tag{BC$_{mn}$}\end{align*} and \begin{align*} x^{\prime\prime}(t)=f(t, x(t),x^{\prime}(t))+e(t),\qquad t\in (0,1)\tag {E}\\ x(0)=\sum\limits_{i=1}^{m-2} c_{i}x^{\prime}(\xi_{i}),\qquad x^{\prime}(1)=\sum\limits_{j=1}^{n-2} a_{j}x^{\prime}(\tau_{j}), \tag{BC$_{mn}$'} \end{align*} Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.
DOI : 10.21136/AM.1996.134310
Classification : 34B10, 34B15
Keywords: multi-point boundary value problems; four point boundary value problems; Leray-Schauder Continuation theorem; a priori bounds
@article{10_21136_AM_1996_134310,
     author = {Gupta, Chaitan P. and Ntouyas, S. K. and Tsamatos, P. Ch.},
     title = {On the solvability of some multi-point boundary value problems},
     journal = {Applications of Mathematics},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {1996},
     doi = {10.21136/AM.1996.134310},
     mrnumber = {1365136},
     zbl = {0858.34013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134310/}
}
TY  - JOUR
AU  - Gupta, Chaitan P.
AU  - Ntouyas, S. K.
AU  - Tsamatos, P. Ch.
TI  - On the solvability of some multi-point boundary value problems
JO  - Applications of Mathematics
PY  - 1996
SP  - 1
EP  - 17
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134310/
DO  - 10.21136/AM.1996.134310
LA  - en
ID  - 10_21136_AM_1996_134310
ER  - 
%0 Journal Article
%A Gupta, Chaitan P.
%A Ntouyas, S. K.
%A Tsamatos, P. Ch.
%T On the solvability of some multi-point boundary value problems
%J Applications of Mathematics
%D 1996
%P 1-17
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134310/
%R 10.21136/AM.1996.134310
%G en
%F 10_21136_AM_1996_134310
Gupta, Chaitan P.; Ntouyas, S. K.; Tsamatos, P. Ch. On the solvability of some multi-point boundary value problems. Applications of Mathematics, Tome 41 (1996) no. 1, pp. 1-17. doi : 10.21136/AM.1996.134310. http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134310/

Cité par Sources :