The linear model with variance-covariance components and jackknife estimation
Applications of Mathematics, Tome 39 (1994) no. 2, pp. 111-125 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\theta^*$ be a biased estimate of the parameter $\vartheta$ based on all observations $x_1$, $\dots$, $x_n$ and let $\theta_{-i}^*$ ($i=1,2,\dots,n$) be the same estimate of the parameter $\vartheta$ obtained after deletion of the $i$-th observation. If the expectation of the estimators $\theta^*$ and $\theta_{-i}^*$ are expressed as $$ \align \mathrm{E}(\theta^*)=\vartheta+a(n)b(\vartheta) \\ \mathrm{E}(\theta_{-i}^*)=\vartheta+a(n-1)b(\vartheta)\qquad i=1,2,\dots,n, \endalign $$ where $a(n)$ is a known sequence of real numbers and $b(\vartheta)$ is a function of $\vartheta$, then this system of equations can be regarded as a linear model. The least squares method gives the generalized jackknife estimator. Using this method, it is possible to obtain the unbiased estimator of the parameter $\vartheta$.
Let $\theta^*$ be a biased estimate of the parameter $\vartheta$ based on all observations $x_1$, $\dots$, $x_n$ and let $\theta_{-i}^*$ ($i=1,2,\dots,n$) be the same estimate of the parameter $\vartheta$ obtained after deletion of the $i$-th observation. If the expectation of the estimators $\theta^*$ and $\theta_{-i}^*$ are expressed as $$ \align \mathrm{E}(\theta^*)=\vartheta+a(n)b(\vartheta) \\ \mathrm{E}(\theta_{-i}^*)=\vartheta+a(n-1)b(\vartheta)\qquad i=1,2,\dots,n, \endalign $$ where $a(n)$ is a known sequence of real numbers and $b(\vartheta)$ is a function of $\vartheta$, then this system of equations can be regarded as a linear model. The least squares method gives the generalized jackknife estimator. Using this method, it is possible to obtain the unbiased estimator of the parameter $\vartheta$.
DOI : 10.21136/AM.1994.134248
Classification : 62F10, 62J10
Keywords: Jackknife estimator; least squares estimator; linear model; estimator of variance-covariance components; consistency
@article{10_21136_AM_1994_134248,
     author = {Kudel\'a\v{s}, Jarom{\'\i}r},
     title = {The linear model with variance-covariance components and jackknife estimation},
     journal = {Applications of Mathematics},
     pages = {111--125},
     year = {1994},
     volume = {39},
     number = {2},
     doi = {10.21136/AM.1994.134248},
     mrnumber = {1258187},
     zbl = {0797.62057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1994.134248/}
}
TY  - JOUR
AU  - Kudeláš, Jaromír
TI  - The linear model with variance-covariance components and jackknife estimation
JO  - Applications of Mathematics
PY  - 1994
SP  - 111
EP  - 125
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1994.134248/
DO  - 10.21136/AM.1994.134248
LA  - en
ID  - 10_21136_AM_1994_134248
ER  - 
%0 Journal Article
%A Kudeláš, Jaromír
%T The linear model with variance-covariance components and jackknife estimation
%J Applications of Mathematics
%D 1994
%P 111-125
%V 39
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1994.134248/
%R 10.21136/AM.1994.134248
%G en
%F 10_21136_AM_1994_134248
Kudeláš, Jaromír. The linear model with variance-covariance components and jackknife estimation. Applications of Mathematics, Tome 39 (1994) no. 2, pp. 111-125. doi: 10.21136/AM.1994.134248

[1] W. Kruskal: When are Gauss-Markov and least square estimators identical? A coordinate free approach. Ann. Math. Statistics 39 (1968), 70–75. | DOI | MR

[2] G. H. Lavergne, J. R. Mathieu: The jackknife method and the Gauss-Markov estimation. Probability and Math. Statistics 8 (1987), 111–116. | MR

[3] R. C. Miller, jr.: An unbalanced jackknife. Ann. Math. Statistics 2 (1974), 880–891. | DOI | MR | Zbl

[4] M. H. Quenouille: Approximate test of correlation in time-series. J. Roy. Statist. Soc. Ser. B 11 (1949), 68–84. | MR

[5] M. H. Quenouille: Notes on bias in estimation. Biometrika 43 (1956), 353–360. | DOI | MR | Zbl

[6] C. R. Rao: Linear statistical inference and its applications. J. Wiley, 1973. | MR | Zbl

[7] F. Štulajter: Consistency of linear and quadratic least squares estimators in regression models with covariance stationary errors. Applications of Mathematics 36(2) (1991), 149–155. | MR

[8] J. W. Tukey: Variances of variance components: II. The unbalanced single classification. Ann. Math. Statist. 28 (1957), 43–56. | DOI | MR

Cité par Sources :