On approximation of the Neumann problem by the penalty method
Applications of Mathematics, Tome 38 (1993) no. 6, pp. 459-469.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.
DOI : 10.21136/AM.1993.104568
Classification : 35J05, 35J25, 35J50, 35Q60, 65N30, 78-08, 78A25
Keywords: Neumann problem; penalty method; finite elements; magnetic field; linear elliptic Neumann problem; Lagrange’s multipliers
@article{10_21136_AM_1993_104568,
     author = {K\v{r}{\'\i}\v{z}ek, Michal},
     title = {On approximation of the {Neumann} problem by the penalty method},
     journal = {Applications of Mathematics},
     pages = {459--469},
     publisher = {mathdoc},
     volume = {38},
     number = {6},
     year = {1993},
     doi = {10.21136/AM.1993.104568},
     mrnumber = {1241449},
     zbl = {0795.65075},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104568/}
}
TY  - JOUR
AU  - Křížek, Michal
TI  - On approximation of the Neumann problem by the penalty method
JO  - Applications of Mathematics
PY  - 1993
SP  - 459
EP  - 469
VL  - 38
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104568/
DO  - 10.21136/AM.1993.104568
LA  - en
ID  - 10_21136_AM_1993_104568
ER  - 
%0 Journal Article
%A Křížek, Michal
%T On approximation of the Neumann problem by the penalty method
%J Applications of Mathematics
%D 1993
%P 459-469
%V 38
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104568/
%R 10.21136/AM.1993.104568
%G en
%F 10_21136_AM_1993_104568
Křížek, Michal. On approximation of the Neumann problem by the penalty method. Applications of Mathematics, Tome 38 (1993) no. 6, pp. 459-469. doi : 10.21136/AM.1993.104568. http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104568/

Cité par Sources :