An algebraic construction of discrete wavelet transforms
Applications of Mathematics, Tome 38 (1993) no. 3, pp. 169-193.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Discrete wavelets are viewed as linear algebraic transforms given by banded orthogonal matrices which can be built up from small matrix blocks satisfying certain conditions. A generalization of the finite support Daubechies wavelets is discussed and some special cases promising more rapid signal reduction are derived.
DOI : 10.21136/AM.1993.104545
Classification : 15A04, 42C15, 65F25, 65F30, 65T99
Keywords: orthogonal transform; wavelet; pyramidal algorithm; discrete wavelets; banded orthogonal matrices; orthogonal wavelets; signal reduction
@article{10_21136_AM_1993_104545,
     author = {Kautsk\'y, Jaroslav},
     title = {An algebraic construction of discrete wavelet transforms},
     journal = {Applications of Mathematics},
     pages = {169--193},
     publisher = {mathdoc},
     volume = {38},
     number = {3},
     year = {1993},
     doi = {10.21136/AM.1993.104545},
     mrnumber = {1218024},
     zbl = {0782.65061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104545/}
}
TY  - JOUR
AU  - Kautský, Jaroslav
TI  - An algebraic construction of discrete wavelet transforms
JO  - Applications of Mathematics
PY  - 1993
SP  - 169
EP  - 193
VL  - 38
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104545/
DO  - 10.21136/AM.1993.104545
LA  - en
ID  - 10_21136_AM_1993_104545
ER  - 
%0 Journal Article
%A Kautský, Jaroslav
%T An algebraic construction of discrete wavelet transforms
%J Applications of Mathematics
%D 1993
%P 169-193
%V 38
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104545/
%R 10.21136/AM.1993.104545
%G en
%F 10_21136_AM_1993_104545
Kautský, Jaroslav. An algebraic construction of discrete wavelet transforms. Applications of Mathematics, Tome 38 (1993) no. 3, pp. 169-193. doi : 10.21136/AM.1993.104545. http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104545/

Cité par Sources :