Oscillations of a nonlinearly damped extensible beam
Applications of Mathematics, Tome 37 (1992) no. 6, pp. 469-478.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that any weak solution to a nonlinear beam equation is eventually globally oscillatory, i.e., there is a uniform oscillatory interval for large times.
DOI : 10.21136/AM.1992.104525
Classification : 35B05, 35B40, 35Q20, 35Q99, 73D35, 73K05, 73K12, 74H45, 74K10
Keywords: oscillations; nonlinear beam; weak solution; uniform oscillatory interval
@article{10_21136_AM_1992_104525,
     author = {Feireisl, Eduard and Herrmann, Leopold},
     title = {Oscillations of a nonlinearly damped extensible beam},
     journal = {Applications of Mathematics},
     pages = {469--478},
     publisher = {mathdoc},
     volume = {37},
     number = {6},
     year = {1992},
     doi = {10.21136/AM.1992.104525},
     mrnumber = {1185802},
     zbl = {0769.73048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104525/}
}
TY  - JOUR
AU  - Feireisl, Eduard
AU  - Herrmann, Leopold
TI  - Oscillations of a nonlinearly damped extensible beam
JO  - Applications of Mathematics
PY  - 1992
SP  - 469
EP  - 478
VL  - 37
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104525/
DO  - 10.21136/AM.1992.104525
LA  - en
ID  - 10_21136_AM_1992_104525
ER  - 
%0 Journal Article
%A Feireisl, Eduard
%A Herrmann, Leopold
%T Oscillations of a nonlinearly damped extensible beam
%J Applications of Mathematics
%D 1992
%P 469-478
%V 37
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104525/
%R 10.21136/AM.1992.104525
%G en
%F 10_21136_AM_1992_104525
Feireisl, Eduard; Herrmann, Leopold. Oscillations of a nonlinearly damped extensible beam. Applications of Mathematics, Tome 37 (1992) no. 6, pp. 469-478. doi : 10.21136/AM.1992.104525. http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104525/

Cité par Sources :