Optimal oscillatory time for a class of second order nonlinear dissipative ODE
Applications of Mathematics, Tome 37 (1992) no. 5, pp. 369-382.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The oscillatorz properties of the equation $\ddot{u}+g(t,\dot{u}) + f(t,u)=0}$ are investigated. The result is applicable to some second order in time evolution equations.
DOI : 10.21136/AM.1992.104517
Classification : 34A34, 34C10, 34C15
Keywords: oscillatory time; second order nonlinear ODE; nonlinear; dissipative; optimal; oscillatory properties
@article{10_21136_AM_1992_104517,
     author = {Herrmann, Leopold},
     title = {Optimal oscillatory time for a class of second order nonlinear dissipative {ODE}},
     journal = {Applications of Mathematics},
     pages = {369--382},
     publisher = {mathdoc},
     volume = {37},
     number = {5},
     year = {1992},
     doi = {10.21136/AM.1992.104517},
     mrnumber = {1175931},
     zbl = {0772.34030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104517/}
}
TY  - JOUR
AU  - Herrmann, Leopold
TI  - Optimal oscillatory time for a class of second order nonlinear dissipative ODE
JO  - Applications of Mathematics
PY  - 1992
SP  - 369
EP  - 382
VL  - 37
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104517/
DO  - 10.21136/AM.1992.104517
LA  - en
ID  - 10_21136_AM_1992_104517
ER  - 
%0 Journal Article
%A Herrmann, Leopold
%T Optimal oscillatory time for a class of second order nonlinear dissipative ODE
%J Applications of Mathematics
%D 1992
%P 369-382
%V 37
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104517/
%R 10.21136/AM.1992.104517
%G en
%F 10_21136_AM_1992_104517
Herrmann, Leopold. Optimal oscillatory time for a class of second order nonlinear dissipative ODE. Applications of Mathematics, Tome 37 (1992) no. 5, pp. 369-382. doi : 10.21136/AM.1992.104517. http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104517/

Cité par Sources :