Keywords: optimal control; variational inequality; convex set; laminated plate; thickness-function; rigid obstacle; optimal design in mechanics; elastic laminate plate
@article{10_21136_AM_1992_104514,
author = {Lov{\'\i}\v{s}ek, J\'an},
title = {Optimal design of laminated plate with obstacle},
journal = {Applications of Mathematics},
pages = {321--342},
year = {1992},
volume = {37},
number = {5},
doi = {10.21136/AM.1992.104514},
mrnumber = {1175928},
zbl = {0780.49027},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104514/}
}
Lovíšek, Ján. Optimal design of laminated plate with obstacle. Applications of Mathematics, Tome 37 (1992) no. 5, pp. 321-342. doi: 10.21136/AM.1992.104514
[1] R. A. Adams: Sobolev spaces. Academic Press, New York, San Francisco, London, 1975. | MR | Zbl
[2] J. P. Aubin: Applied functional analysis. John Wiley-Sons, New York, 1979. | MR | Zbl
[3] V. Barbu: Optimal control of variational inequalities. Pitman Advanced Publishing, Boston, London, Melbourne, 1984. | MR | Zbl
[4] M. P. Bendsøe J. Sokolowski: Sensitivity analysis and optimal design of elastic plates with unilateral point supports. Mech. Struct. Mach. 15 no. 3 (1987), 383-393. | DOI | MR
[5] W. Becker: A complex potential method for plate problems with bending extension coupling. Archive of Appl. Mech. 61 (1991), 318-326. | DOI | Zbl
[6] G. Duvaut J. L. Lions: Inequalities in mechanics and physics. Springer-Verlag, Berlin,. 1975. | MR
[7] I. Hlaváček J. Nečas: On inequalities of Korn's type. Arch. Ratl. Mech. Anal. 36 (1970), 305-311. | DOI | MR
[8] J. Haslinger P. Neittaanmäki: Finite element and approximation for optimal shape design. Theory and application. J. Wiley, 1988. | MR
[9] I. Hlaváček I. Bock J. Lovíšek: Optimal control of a variational inequality with applications to structural analysis II. Local optimalization of the stress in a beam. III. Optimal design of elastic plate. Appl. Math. Optim. 13 (1985), 117-136. | DOI | MR
[10] I. Hlaváček I. Bock J. Lovíšek: On the solution of boundary value problems for sandwich plates. Aplikace matematiky 31 no. 4 (1986), 282-292. | MR
[11] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications. Academic Press, 1980. | MR
[12] T. Lewinski J. J. Telega: Homogenization and effective properties of plates weakened by partially penetrating fissures: Asymptotic analysis. Int. Engng Sci. 29 no. 9 (1991), 1129-1155. | MR
[13] J. L. Lions: Optimal control of system governed by partial differential equations. Springer-Verlag, Berlin, 1971. | MR
[14] V. C. Litvinov: Optimal control of elliptic boundary value problems with applications to mechanics. Nauka, Moskva, 1977. (In Russian.)
[15] R. Mignot: Controle dans les inéquations variationelles elliptiques. Journal of Functional Analysis 22 (1976), 130-185. | DOI | MR | Zbl
[16] R. Mignot J. O. Puel: Optimal control in some variational inequalities. SIAM Journal on Control and Optimization 22 (1984), 466-276. | DOI | MR
[17] U. Mosco: Convergence of convex sets and of solutions of variational inequalities. Advances of Math. 3 (1969), 510-585. | DOI | MR | Zbl
[18] U. Mosco: On the continuity of the Young-Fenchel transform. Journal of Math. Anal. and Appl. 35 (1971), 518-535. | DOI | MR | Zbl
[19] P. D. Panagiotopoulos: Inequality problems in mechanics and applications, Convex and nonconvex energy functions. Birkhäuser-Verlag, Boston-Basel-Stuttgart, 1985. | MR | Zbl
[20] H. Reismann: Elastic plates. Theory and applications. John Wiley, Sons, New York, 1988.
[21] T. Tiihonen: Abstract approach to a shape design problem for variational inequalities. University of Jyväskylä, Finland.
[22] J. P. Yvon: Etude de quelques probléms de controle pour des systems distribués. These de doctorat d'Etat, Universitete Paris VI, 1973.
[23] S. Shuzhong: Optimal control of a strongly monotone variational inequalities. SIAM Journal Control and Optimization 26 no. 2, March (1988). | MR
Cité par Sources :