On solving systems of differential algebraic equations
Applications of Mathematics, Tome 37 (1992) no. 4, pp. 257-264.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper the comparison method is used to prove the convergence of the Picard iterations, the Seidel iterations, as well as some modifications of these methods applied to approximate solution of systems of differential algebraic equations. The both linear and nonlinear comparison equations are emloyed.
DOI : 10.21136/AM.1992.104508
Classification : 34A09, 34A34, 34A45, 65L05
Keywords: Picard method; Seidel method; system of differential algebraic equations; convergence; successive approximations; differential algebraic equations; comparison method; Picard iterations
@article{10_21136_AM_1992_104508,
     author = {Kwapisz, Marian},
     title = {On solving systems of differential algebraic equations},
     journal = {Applications of Mathematics},
     pages = {257--264},
     publisher = {mathdoc},
     volume = {37},
     number = {4},
     year = {1992},
     doi = {10.21136/AM.1992.104508},
     mrnumber = {1180604},
     zbl = {0764.65038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104508/}
}
TY  - JOUR
AU  - Kwapisz, Marian
TI  - On solving systems of differential algebraic equations
JO  - Applications of Mathematics
PY  - 1992
SP  - 257
EP  - 264
VL  - 37
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104508/
DO  - 10.21136/AM.1992.104508
LA  - en
ID  - 10_21136_AM_1992_104508
ER  - 
%0 Journal Article
%A Kwapisz, Marian
%T On solving systems of differential algebraic equations
%J Applications of Mathematics
%D 1992
%P 257-264
%V 37
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104508/
%R 10.21136/AM.1992.104508
%G en
%F 10_21136_AM_1992_104508
Kwapisz, Marian. On solving systems of differential algebraic equations. Applications of Mathematics, Tome 37 (1992) no. 4, pp. 257-264. doi : 10.21136/AM.1992.104508. http://geodesic.mathdoc.fr/articles/10.21136/AM.1992.104508/

Cité par Sources :