Shape optimization of elasto-plastic axisymmetric bodies
Applications of Mathematics, Tome 36 (1991) no. 6, pp. 469-491.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
DOI : 10.21136/AM.1991.104483
Classification : 65K10, 65N30, 73E99, 73V25, 73k40, 74B99, 74C99, 74P10, 74S30
Keywords: domain optimization; control of variational inequalities; Hencky's law of elasto-plasticity
@article{10_21136_AM_1991_104483,
     author = {Hlav\'a\v{c}ek, Ivan},
     title = {Shape optimization of elasto-plastic axisymmetric bodies},
     journal = {Applications of Mathematics},
     pages = {469--491},
     publisher = {mathdoc},
     volume = {36},
     number = {6},
     year = {1991},
     doi = {10.21136/AM.1991.104483},
     mrnumber = {1134923},
     zbl = {0756.73094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104483/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
TI  - Shape optimization of elasto-plastic axisymmetric bodies
JO  - Applications of Mathematics
PY  - 1991
SP  - 469
EP  - 491
VL  - 36
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104483/
DO  - 10.21136/AM.1991.104483
LA  - en
ID  - 10_21136_AM_1991_104483
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%T Shape optimization of elasto-plastic axisymmetric bodies
%J Applications of Mathematics
%D 1991
%P 469-491
%V 36
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104483/
%R 10.21136/AM.1991.104483
%G en
%F 10_21136_AM_1991_104483
Hlaváček, Ivan. Shape optimization of elasto-plastic axisymmetric bodies. Applications of Mathematics, Tome 36 (1991) no. 6, pp. 469-491. doi : 10.21136/AM.1991.104483. http://geodesic.mathdoc.fr/articles/10.21136/AM.1991.104483/

Cité par Sources :