Iterative solution of eigenvalue problems for normal operators
Applications of Mathematics, Tome 35 (1990) no. 2, pp. 158-161 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.
We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.
DOI : 10.21136/AM.1990.104397
Classification : 47A75, 47B15, 49G20, 65J10
Keywords: eigenvalue problem; normal operator; Kellogg's iteration; Hilbert space; eigenvector
@article{10_21136_AM_1990_104397,
     author = {Kojeck\'y, Tom\'a\v{s}},
     title = {Iterative solution of eigenvalue problems for normal operators},
     journal = {Applications of Mathematics},
     pages = {158--161},
     year = {1990},
     volume = {35},
     number = {2},
     doi = {10.21136/AM.1990.104397},
     mrnumber = {1042851},
     zbl = {0708.65055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104397/}
}
TY  - JOUR
AU  - Kojecký, Tomáš
TI  - Iterative solution of eigenvalue problems for normal operators
JO  - Applications of Mathematics
PY  - 1990
SP  - 158
EP  - 161
VL  - 35
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104397/
DO  - 10.21136/AM.1990.104397
LA  - en
ID  - 10_21136_AM_1990_104397
ER  - 
%0 Journal Article
%A Kojecký, Tomáš
%T Iterative solution of eigenvalue problems for normal operators
%J Applications of Mathematics
%D 1990
%P 158-161
%V 35
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104397/
%R 10.21136/AM.1990.104397
%G en
%F 10_21136_AM_1990_104397
Kojecký, Tomáš. Iterative solution of eigenvalue problems for normal operators. Applications of Mathematics, Tome 35 (1990) no. 2, pp. 158-161. doi: 10.21136/AM.1990.104397

[1] N. Dunford J. T. Schwartz: Linear operators. I(II), Mir, Moskva 1962 (1966). | MR

[2] T. Kojecký: Some results about convergence of Kellogg's iterations in eigenvalue problems. Czechoslovak Math. J. (to appear).

[3] J. Kolomý: Approximate determination of eigenvalues and eigenvectors of self-adjoint operators. Ann. Math. Pol. 38 (1980), 153-158. | DOI | MR

[4] I. Marek: Iterations of linear bounded operators in non self-adjoint eigenvalue problems and Kellogg's iteration process. Czechoslovak Math. J. 12 (1962), 536-554. | MR | Zbl

Cité par Sources :