Discrete smoothing splines and digital filtration. Theory and applications
Applications of Mathematics, Tome 35 (1990) no. 1, pp. 28-50 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector $r={(r_0,..., r_{n-1})}^T$ with respect to the operations $\Cal{A}$, $\Cal{L}$ and to the smoothing parameter $\alpha$. The resulting function is denoted by $\sigma_\alpha(t)$. The measured sample $r$ is defined on an equally spaced mesh $\Delta=\{t_i=ih\}^{n-1}_{i=0}$ $T=nh$. The smoothed data vector $y$ is then $y=\{\sigma_\alpha(t_i)\}^{n-1}_{i=0}$. The other operation gives $y\in E^n$ computed by $\bold {y=h*r}$, where $\bold *$ stands for the discrete convolution, the running weighted mean by $h$. The main aims of the present contribution: to prove the existence of close interconnection between the two smoothing approaches (Cor. 2.6 and [11]), to develop the transfer function, which characterizes the smoothing spline as a filter in terms of $\alpha$ and $\lambda_{ik}$ (the eigenvalues of the discrete analogue of $Cal {L}$) (Th. 2.5), to develop the reduction ratio between the original and the smoothed data in the same terms (Th. 3.1).
Two universally applicable smoothing operations adjustable to meet the specific properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing digital convolution filters. The first operation is related to the data vector $r={(r_0,..., r_{n-1})}^T$ with respect to the operations $\Cal{A}$, $\Cal{L}$ and to the smoothing parameter $\alpha$. The resulting function is denoted by $\sigma_\alpha(t)$. The measured sample $r$ is defined on an equally spaced mesh $\Delta=\{t_i=ih\}^{n-1}_{i=0}$ $T=nh$. The smoothed data vector $y$ is then $y=\{\sigma_\alpha(t_i)\}^{n-1}_{i=0}$. The other operation gives $y\in E^n$ computed by $\bold {y=h*r}$, where $\bold *$ stands for the discrete convolution, the running weighted mean by $h$. The main aims of the present contribution: to prove the existence of close interconnection between the two smoothing approaches (Cor. 2.6 and [11]), to develop the transfer function, which characterizes the smoothing spline as a filter in terms of $\alpha$ and $\lambda_{ik}$ (the eigenvalues of the discrete analogue of $Cal {L}$) (Th. 2.5), to develop the reduction ratio between the original and the smoothed data in the same terms (Th. 3.1).
DOI : 10.21136/AM.1990.104385
Classification : 41A15, 65D07, 65D10, 65K10, 93E11, 93E14
Keywords: discrete smoothing spline CDS-spline; smoothing parameter; digital convolution filter; transfer function; sinusoidal wave; saw-like waves; rectangular pulse train
@article{10_21136_AM_1990_104385,
     author = {H\v{r}eb{\'\i}\v{c}ek, Ji\v{r}{\'\i} and \v{S}ik, Franti\v{s}ek and Vesel\'y, V{\'\i}t\v{e}zslav},
     title = {Discrete smoothing splines and digital filtration. {Theory} and applications},
     journal = {Applications of Mathematics},
     pages = {28--50},
     year = {1990},
     volume = {35},
     number = {1},
     doi = {10.21136/AM.1990.104385},
     mrnumber = {1039409},
     zbl = {0704.65005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104385/}
}
TY  - JOUR
AU  - Hřebíček, Jiří
AU  - Šik, František
AU  - Veselý, Vítězslav
TI  - Discrete smoothing splines and digital filtration. Theory and applications
JO  - Applications of Mathematics
PY  - 1990
SP  - 28
EP  - 50
VL  - 35
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104385/
DO  - 10.21136/AM.1990.104385
LA  - en
ID  - 10_21136_AM_1990_104385
ER  - 
%0 Journal Article
%A Hřebíček, Jiří
%A Šik, František
%A Veselý, Vítězslav
%T Discrete smoothing splines and digital filtration. Theory and applications
%J Applications of Mathematics
%D 1990
%P 28-50
%V 35
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104385/
%R 10.21136/AM.1990.104385
%G en
%F 10_21136_AM_1990_104385
Hřebíček, Jiří; Šik, František; Veselý, Vítězslav. Discrete smoothing splines and digital filtration. Theory and applications. Applications of Mathematics, Tome 35 (1990) no. 1, pp. 28-50. doi: 10.21136/AM.1990.104385

[1] P. M. Anselone P.-J. Laurent: A general method for the construction of interpolating or smoothing spline functions. Num. Math. 12 (1968) No. 1, 66-82. | DOI | MR

[2] P. Bečička J. Hřebíček F. Šik: Numerical analysis of smoothing splines. (Czech). Proceed. 9-th Symposium on Algorithms ALGORITMY 87, JSMF, Bratislava. 1987, 22-24.

[3] K. Böhmer: Spline-Funktionen. Teubner, Stuttgart, 1974. | MR

[4] E. O. Brigham: The Fast Fourier Transform. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1974. | Zbl

[5] C. S. Burrus T. W. Parks: DFT/FFT and Convolution Algorithms. Wiley Interscience, 1985.

[6] P. Craven G. Wahba: Smoothing Noisy Data with Spline Functions. Numer. Math. 31 (1979), 377-403. | DOI | MR

[7] D. F. Elliot K. R. Rao: Fast transforms. Algorithms, Analyses, Applications. Acad. Press, New York, London, 1982. | MR

[8] W. Gautschi: Attenuation Factors in Practical Fourier Analysis. Num. Math. 18 (1972), 373-400. | DOI | MR | Zbl

[9] M. H. Gutknecht: Attenuation factors in multivariate Fourier analysis. Num. Math. 51 (1987), 615-629. | DOI | MR | Zbl

[10] J. Hřebíček F. Šik V. Veselý: Digital convolution filters and smoothing splines. Proceed. 2nd ISNA (I. Marek, ed.), Prague 1987, Teubner, Leipzig, 1988, 187-193. | MR

[11] J. Hřebíček F. Šik V. Veselý: How to choose the smoothing parameter of a periodic smoothing spline. (to appear).

[12] J. Hřebíček F. Šik P. Švenda V. Veselý: Smoothing splines and digital filtration. Research Report, Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Brno, 1987.

[13] L. V. Kantorovič V. I. Krylov: Approximate methods of higher analysis. (in Russian). 4. ed. Moskva, 1952. | MR

[14] P. J. Laurent: Approximation et Optimisation. Hermann, Paris, 1972. | MR | Zbl

[15] F. Locher: Interpolation on uniform meshes by the translates of one function and related attenuation factors. Math. Comput. 37 (1981) No. 156, 403 - 416. | DOI | MR | Zbl

[16] M. Marcus H. Minc: A survey of matrix theory and matrix inequalities. Boston 1964 (Russian translation, Nauka, Moskva, 1972). | MR

[17] H. J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms. 2nd ed., Springer, Berlin, Heidelberg, New York, 1982. | MR

[18] V. A. Vasilenko: Spline-Functions: Theory, Algorithms, Programs. (in Russian). Nauka, Novosibirsk, 1983. | MR | Zbl

[19] J. Hřebíček F. Šik V. Veselý: Smoothing by discrete splines and digital convolution filters. (Czech). Proceed Conf. Numer. Methods in the Physical Metallurgy (J. Hřebíček, ed.) Blansko 1988, ÚFM ČSAV Brno 1988, 62-70.

Cité par Sources :