Convergence of the accelerated overrelaxation method
Applications of Mathematics, Tome 34 (1989) no. 6, pp. 475-479 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The convergence of the Accelerated Overrelaxation (AOR) method is discussed. It is shown that the intervals of convergence for the parameters $\sigma$ and $\omega$ are not always of the following form: $0\leq \omega \leq \omega_1, -\sigma_1\leq\sigma\leq\sigma_2, \sigma_1, \sigma_2\geq 0$.
The convergence of the Accelerated Overrelaxation (AOR) method is discussed. It is shown that the intervals of convergence for the parameters $\sigma$ and $\omega$ are not always of the following form: $0\leq \omega \leq \omega_1, -\sigma_1\leq\sigma\leq\sigma_2, \sigma_1, \sigma_2\geq 0$.
DOI : 10.21136/AM.1989.104378
Classification : 65F10
Keywords: accelerated overrelaxation method; AOR method; successive overrelaxation; rate of convergence; relaxation parameter; interval of convergence; iterative process
@article{10_21136_AM_1989_104378,
     author = {Herceg, Dragoslav and Cvetkovi\'c, Ljiljana},
     title = {Convergence of the accelerated overrelaxation method},
     journal = {Applications of Mathematics},
     pages = {475--479},
     year = {1989},
     volume = {34},
     number = {6},
     doi = {10.21136/AM.1989.104378},
     mrnumber = {1026512},
     zbl = {0697.65020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104378/}
}
TY  - JOUR
AU  - Herceg, Dragoslav
AU  - Cvetković, Ljiljana
TI  - Convergence of the accelerated overrelaxation method
JO  - Applications of Mathematics
PY  - 1989
SP  - 475
EP  - 479
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104378/
DO  - 10.21136/AM.1989.104378
LA  - en
ID  - 10_21136_AM_1989_104378
ER  - 
%0 Journal Article
%A Herceg, Dragoslav
%A Cvetković, Ljiljana
%T Convergence of the accelerated overrelaxation method
%J Applications of Mathematics
%D 1989
%P 475-479
%V 34
%N 6
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104378/
%R 10.21136/AM.1989.104378
%G en
%F 10_21136_AM_1989_104378
Herceg, Dragoslav; Cvetković, Ljiljana. Convergence of the accelerated overrelaxation method. Applications of Mathematics, Tome 34 (1989) no. 6, pp. 475-479. doi: 10.21136/AM.1989.104378

[1] G. Avdelas A. Hadjidimos: Some theoretical and computational results concerning the accelerated overrelaxation (AOR) method. Anal. Numer. Theor. Approx. 9 (1980), 5-10. | MR

[2] Lj. Cvetkovič D. Herceg: Some sufficient conditions for convergence AOR-method. In: Numerical Methods and Approximation Theory, G. V. Milovanič, ed., Faculty of Electronic Engineering, Niš, 1984, 143-148. | MR

[3] Lj. Cvetkovič D. Herceg: Convergence theory for AOR method. Journal of Computational Mathematics (in print).

[4] Lj. Cvetkovič D. Herceg: An improvement for the area of convergence of the AOR method. Anal. Numer. Theor. Approx. 16 (1987), 109-115. | MR

[5] A. Hadjidimos: Accelerated overrelaxation method. Math. Соmр. 32 (1978), 149-157. | MR | Zbl

[6] S. Hague: Convergence of the successive overrelaxation method. IMA J. Numer. Anal. 7 (1987), 307-311. | DOI | MR

[7] M. Martins: An improvement for the area of convergence of the accelerated overrelaxation iterative method. Anal. Numer. Theor. Approx. 12 (1983), 65 - 76. | MR | Zbl

Cité par Sources :