Stereology of grain boundary precipitates
Applications of Mathematics, Tome 34 (1989) no. 4, pp. 303-317 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Precipitates modelled by rotary symmetrical lens-shaped discs are situated on matrix grain boundaries and the homogeneous specimen is intersected by a plate section. The stereological model presented enables one to express all basic parameters of spatial structure and moments of the corresponding probability distributions of quantitative characteristics of precipitates in terms of planar structure parameters the values of which can be estimated from measurements carried out in the plane section. The derived relationships are transformed into those valid for spherical precipitates.
Precipitates modelled by rotary symmetrical lens-shaped discs are situated on matrix grain boundaries and the homogeneous specimen is intersected by a plate section. The stereological model presented enables one to express all basic parameters of spatial structure and moments of the corresponding probability distributions of quantitative characteristics of precipitates in terms of planar structure parameters the values of which can be estimated from measurements carried out in the plane section. The derived relationships are transformed into those valid for spherical precipitates.
DOI : 10.21136/AM.1989.104358
Classification : 52A22, 60D05, 92F05
Keywords: random tesselation; stereology; lens-shaped discs; stereological model; parameter estimations
@article{10_21136_AM_1989_104358,
     author = {Hor\'alek, Vratislav},
     title = {Stereology of grain boundary precipitates},
     journal = {Applications of Mathematics},
     pages = {303--317},
     year = {1989},
     volume = {34},
     number = {4},
     doi = {10.21136/AM.1989.104358},
     mrnumber = {1008582},
     zbl = {0688.60010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104358/}
}
TY  - JOUR
AU  - Horálek, Vratislav
TI  - Stereology of grain boundary precipitates
JO  - Applications of Mathematics
PY  - 1989
SP  - 303
EP  - 317
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104358/
DO  - 10.21136/AM.1989.104358
LA  - en
ID  - 10_21136_AM_1989_104358
ER  - 
%0 Journal Article
%A Horálek, Vratislav
%T Stereology of grain boundary precipitates
%J Applications of Mathematics
%D 1989
%P 303-317
%V 34
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104358/
%R 10.21136/AM.1989.104358
%G en
%F 10_21136_AM_1989_104358
Horálek, Vratislav. Stereology of grain boundary precipitates. Applications of Mathematics, Tome 34 (1989) no. 4, pp. 303-317. doi: 10.21136/AM.1989.104358

[1] R. Coleman: An Introduction to Mathematical Stereology. Memoirs No. 3, Department of Theoretical Statistics, University of Aarhus, Denmark, 1979. | MR | Zbl

[2] R. Coleman: Line section sampling of Wicksell's corpuscles. Acta Stereologica, 6 (1987), 33-36. | Zbl

[3] E. N. Gilbert: Random subdivision of space into crystals. Ann. Math. Statistics, 33 (1962), 958-72. | DOI | MR

[4] A. M. Gokhale A. K. Jena: Size distribution of grain-boundary precipitates. Metallography 13 (1980), 307-17. | DOI

[5] V. Horálek: Statistical Models of Some Testing and Inspection Procedures of Products, Materials and Raw Materials. (in Czech). Thesis, Charles University Praha, 1961.

[6] A. J. Jakeman R. S. Anderssen: Abel type integral equation in stereology. I. General discussion. J. Microscopy, 105 (1975), 121-33.

[7] J. W. Martin R. D. Doherty: Stability of Microstructure in Metallic Systems. Cambridge University Press, London, 1975.

[8] J. L. Meijering: Interface area, edge length and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep. 8 (1953), 270-90. | Zbl

[9] R. E. Miles: The random division of space. Suppl. Adv. Appl. Prob., 1972, 243-66. | Zbl

[10] J. Møller: Random tessellation in $R^d$. Memoirs No. 9, Department of Theoretical Statistics, University of Aarhus, Denmark, 1986.

[11] S. A. Saltykov: Stereometric Metallography. 2nd. Ed., Metallurgizdat, Moscow, 1958.

[12] C. S. Smith L. Guttman: Measurement of internal boundaries in three-dimensional structure by random sectioning. Trans: AIME 197 (1953), 81 - 87.

[13] D. Stoyan W. S. Kendall J. Mecke: Stochastic Geometry and Its Applications. Akademie Verlag, Berlin, 1987. | MR

[14] E. E. Underwood: Quantitative Stereology. Addison-Wesley, Reading, Mass., 1970.

[15] S. D. Wicksell: The corpuscle problem. A mathematical study of a biometric problem. Biometrika, 17 (1925), 84-99.

Cité par Sources :