Inequalities of Korn's type, uniform with respect to a class of domains
Applications of Mathematics, Tome 34 (1989) no. 2, pp. 105-112.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Inequalities of Korn's type involve a positive constant, which depends on the domain, in general. A question arises, whether the constants possess a positive infimum, if a class of bounded two-dimensional domains with Lipschitz boundary is considered. The proof of a positive answer to this question is shown for several types of boundary conditions and for two classes of domains.
DOI : 10.21136/AM.1989.104339
Classification : 35J20, 35J55, 49A22, 49J20
Keywords: domain optimization; Korn’s inequality; Friedrichs inequality
@article{10_21136_AM_1989_104339,
     author = {Hlav\'a\v{c}ek, Ivan},
     title = {Inequalities of {Korn's} type, uniform with respect to a class of domains},
     journal = {Applications of Mathematics},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {1989},
     doi = {10.21136/AM.1989.104339},
     mrnumber = {0990298},
     zbl = {0673.49003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104339/}
}
TY  - JOUR
AU  - Hlaváček, Ivan
TI  - Inequalities of Korn's type, uniform with respect to a class of domains
JO  - Applications of Mathematics
PY  - 1989
SP  - 105
EP  - 112
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104339/
DO  - 10.21136/AM.1989.104339
LA  - en
ID  - 10_21136_AM_1989_104339
ER  - 
%0 Journal Article
%A Hlaváček, Ivan
%T Inequalities of Korn's type, uniform with respect to a class of domains
%J Applications of Mathematics
%D 1989
%P 105-112
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104339/
%R 10.21136/AM.1989.104339
%G en
%F 10_21136_AM_1989_104339
Hlaváček, Ivan. Inequalities of Korn's type, uniform with respect to a class of domains. Applications of Mathematics, Tome 34 (1989) no. 2, pp. 105-112. doi : 10.21136/AM.1989.104339. http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104339/

Cité par Sources :