The Darboux theorem on plane trajectories of two-parametric space motions
Applications of Mathematics, Tome 33 (1988) no. 6, pp. 417-442.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper contains the proof of the classification theorem for two-parametric space motions with at least 5 points with plane trajectories. The proof is based on [1] and on the cannonical form of a certain tensor of order 3. The second part of the paper deals with the problem of plane trajectories from the differential-geometrical point of view. Some applications are given.
DOI : 10.21136/AM.1988.104322
Classification : 53A17
Keywords: two parametric space motions; Darboux-theorem; kinematics geometry
@article{10_21136_AM_1988_104322,
     author = {Karger, Adolf},
     title = {The {Darboux} theorem on plane trajectories of two-parametric space motions},
     journal = {Applications of Mathematics},
     pages = {417--442},
     publisher = {mathdoc},
     volume = {33},
     number = {6},
     year = {1988},
     doi = {10.21136/AM.1988.104322},
     mrnumber = {0973238},
     zbl = {0666.53004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104322/}
}
TY  - JOUR
AU  - Karger, Adolf
TI  - The Darboux theorem on plane trajectories of two-parametric space motions
JO  - Applications of Mathematics
PY  - 1988
SP  - 417
EP  - 442
VL  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104322/
DO  - 10.21136/AM.1988.104322
LA  - en
ID  - 10_21136_AM_1988_104322
ER  - 
%0 Journal Article
%A Karger, Adolf
%T The Darboux theorem on plane trajectories of two-parametric space motions
%J Applications of Mathematics
%D 1988
%P 417-442
%V 33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104322/
%R 10.21136/AM.1988.104322
%G en
%F 10_21136_AM_1988_104322
Karger, Adolf. The Darboux theorem on plane trajectories of two-parametric space motions. Applications of Mathematics, Tome 33 (1988) no. 6, pp. 417-442. doi : 10.21136/AM.1988.104322. http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104322/

Cité par Sources :