Generalized length biased distributions
Applications of Mathematics, Tome 33 (1988) no. 5, pp. 354-361.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Generalized length biased distribution is defined as $h(x)=\phi_r (x)f(x), x>0$, where $f(x)$ is a probability density function, $\phi_r (x)$ is a polynomial of degree $r$, that is, $\phi_r (x)=a_1(x/\mu'_1)+ \ldots + a_r(x^r/\mu'_r)$, with $a_i>0, i=1,\ldots ,r, a_1+\ldots + a_r=1, \mu'_i=E(x^i)$ for $f(x), i=1,2 \ldots, r$. If $r=1$, we have the simple length biased distribution of Gupta and Keating [1]. First, characterizations of exponential, uniform and beta distributions are given in terms of simple length biased distributions. Next, for the case of generalized distribution, the distribution of the sum of $n$ independent variables is put in the closed form when $f(x)$ is exponential. Finally, Bayesian estimates of $a_1, \ldots, a_r$ are obtained for the generalized distribution for general $f(x), x>1$.
DOI : 10.21136/AM.1988.104316
Classification : 62E10, 62E15, 62F15
Keywords: characterizations; exponential; uniform; beta distributions; length biased distributions; Bayesian estimates
@article{10_21136_AM_1988_104316,
     author = {Lingappaiah, Giri S.},
     title = {Generalized length biased distributions},
     journal = {Applications of Mathematics},
     pages = {354--361},
     publisher = {mathdoc},
     volume = {33},
     number = {5},
     year = {1988},
     doi = {10.21136/AM.1988.104316},
     mrnumber = {0961313},
     zbl = {0665.62016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104316/}
}
TY  - JOUR
AU  - Lingappaiah, Giri S.
TI  - Generalized length biased distributions
JO  - Applications of Mathematics
PY  - 1988
SP  - 354
EP  - 361
VL  - 33
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104316/
DO  - 10.21136/AM.1988.104316
LA  - en
ID  - 10_21136_AM_1988_104316
ER  - 
%0 Journal Article
%A Lingappaiah, Giri S.
%T Generalized length biased distributions
%J Applications of Mathematics
%D 1988
%P 354-361
%V 33
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104316/
%R 10.21136/AM.1988.104316
%G en
%F 10_21136_AM_1988_104316
Lingappaiah, Giri S. Generalized length biased distributions. Applications of Mathematics, Tome 33 (1988) no. 5, pp. 354-361. doi : 10.21136/AM.1988.104316. http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104316/

Cité par Sources :