On total truncation error estimation for the one-step method
Applications of Mathematics, Tome 32 (1987) no. 3, pp. 177-185.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper the author establishes estimation of the total truncation error after $s$ steps in the fifth order Ruge-Kutta-Huťa formula for systems of differential equations. The approach is analogous to that used by Vejvoda for the estimation of the classical formulas of the Runge-Kutta type of the 4-th order.
DOI : 10.21136/AM.1987.104249
Classification : 34A34, 65G99, 65L05
Keywords: global error estimation; fifth order Runge-Kutta method; system; differential equations; numerical solution; fifth order; error analysis
@article{10_21136_AM_1987_104249,
     author = {Valkov\'a, Anna},
     title = {On total truncation error estimation for the one-step method},
     journal = {Applications of Mathematics},
     pages = {177--185},
     publisher = {mathdoc},
     volume = {32},
     number = {3},
     year = {1987},
     doi = {10.21136/AM.1987.104249},
     mrnumber = {0895876},
     zbl = {0628.65049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104249/}
}
TY  - JOUR
AU  - Valková, Anna
TI  - On total truncation error estimation for the one-step method
JO  - Applications of Mathematics
PY  - 1987
SP  - 177
EP  - 185
VL  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104249/
DO  - 10.21136/AM.1987.104249
LA  - en
ID  - 10_21136_AM_1987_104249
ER  - 
%0 Journal Article
%A Valková, Anna
%T On total truncation error estimation for the one-step method
%J Applications of Mathematics
%D 1987
%P 177-185
%V 32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104249/
%R 10.21136/AM.1987.104249
%G en
%F 10_21136_AM_1987_104249
Valková, Anna. On total truncation error estimation for the one-step method. Applications of Mathematics, Tome 32 (1987) no. 3, pp. 177-185. doi : 10.21136/AM.1987.104249. http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104249/

Cité par Sources :