Two-parametric motions in $E_3$
Applications of Mathematics, Tome 32 (1987) no. 2, pp. 96-119.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with the local differential geometry of two-parametric motions in the Euclidean space. The first part of the paper contains contemporary formulation of classical results in this area together with the connection to the elliptical differential geometry. The remaining part contains applications. Necessary and sufficient conditions for splitting of a two-parametric motion into a product of two one-parametric motions, characterization of motions with constant invariants and some others. The case of rolling of two isometric surfaces is treated in detail.
DOI : 10.21136/AM.1987.104240
Classification : 53A17
Keywords: kinematics; two-parametric motions; rolling of two isometric surfaces; differential geometry; Lie groups and Lie algebras
@article{10_21136_AM_1987_104240,
     author = {Karger, Adolf},
     title = {Two-parametric motions in $E_3$},
     journal = {Applications of Mathematics},
     pages = {96--119},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {1987},
     doi = {10.21136/AM.1987.104240},
     mrnumber = {0885757},
     zbl = {0621.53010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104240/}
}
TY  - JOUR
AU  - Karger, Adolf
TI  - Two-parametric motions in $E_3$
JO  - Applications of Mathematics
PY  - 1987
SP  - 96
EP  - 119
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104240/
DO  - 10.21136/AM.1987.104240
LA  - en
ID  - 10_21136_AM_1987_104240
ER  - 
%0 Journal Article
%A Karger, Adolf
%T Two-parametric motions in $E_3$
%J Applications of Mathematics
%D 1987
%P 96-119
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104240/
%R 10.21136/AM.1987.104240
%G en
%F 10_21136_AM_1987_104240
Karger, Adolf. Two-parametric motions in $E_3$. Applications of Mathematics, Tome 32 (1987) no. 2, pp. 96-119. doi : 10.21136/AM.1987.104240. http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104240/

Cité par Sources :