Bifurcations of the periodic solutions in symmetric systems
Applications of Mathematics, Tome 31 (1986) no. 1, pp. 27-40.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Bifurcation phenomena in systems of ordinary differential equations which are invariant with respect to involutive diffeomorphisms, are studied. Teh "symmetry-breaking" bifurcation is investigated in detail.
DOI : 10.21136/AM.1986.104182
Classification : 34C25, 58F14, 58F22
Keywords: first order differential equation; delta-symmetric solution; periodic doubling bifurcations; symmetry-breaking bifurcations
@article{10_21136_AM_1986_104182,
     author = {Kl{\'\i}\v{c}, Alois},
     title = {Bifurcations of the periodic solutions in symmetric systems},
     journal = {Applications of Mathematics},
     pages = {27--40},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {1986},
     doi = {10.21136/AM.1986.104182},
     mrnumber = {0836800},
     zbl = {0596.34024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1986.104182/}
}
TY  - JOUR
AU  - Klíč, Alois
TI  - Bifurcations of the periodic solutions in symmetric systems
JO  - Applications of Mathematics
PY  - 1986
SP  - 27
EP  - 40
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1986.104182/
DO  - 10.21136/AM.1986.104182
LA  - en
ID  - 10_21136_AM_1986_104182
ER  - 
%0 Journal Article
%A Klíč, Alois
%T Bifurcations of the periodic solutions in symmetric systems
%J Applications of Mathematics
%D 1986
%P 27-40
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1986.104182/
%R 10.21136/AM.1986.104182
%G en
%F 10_21136_AM_1986_104182
Klíč, Alois. Bifurcations of the periodic solutions in symmetric systems. Applications of Mathematics, Tome 31 (1986) no. 1, pp. 27-40. doi : 10.21136/AM.1986.104182. http://geodesic.mathdoc.fr/articles/10.21136/AM.1986.104182/

Cité par Sources :