Keywords: heat equation; nonlinear unbounded memory; uniqueness; existence; boundary value problem
@article{10_21136_AM_1985_104175,
author = {Doktor, Alexandr},
title = {On the solution of the heat equation with nonlinear unbounded memory},
journal = {Applications of Mathematics},
pages = {461--474},
year = {1985},
volume = {30},
number = {6},
doi = {10.21136/AM.1985.104175},
mrnumber = {0813534},
zbl = {0602.35056},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1985.104175/}
}
TY - JOUR AU - Doktor, Alexandr TI - On the solution of the heat equation with nonlinear unbounded memory JO - Applications of Mathematics PY - 1985 SP - 461 EP - 474 VL - 30 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1985.104175/ DO - 10.21136/AM.1985.104175 LA - en ID - 10_21136_AM_1985_104175 ER -
Doktor, Alexandr. On the solution of the heat equation with nonlinear unbounded memory. Applications of Mathematics, Tome 30 (1985) no. 6, pp. 461-474. doi: 10.21136/AM.1985.104175
[1] A. Doktor: Heat transmission and mass transfer in hardening concrete. (In Czech), Research report III-2-3/04-05, VÚM, Praha 1983.
[2] E. Rastrup: Heat of hydration of conrete. Magazine of Concrete Research, v. 6, no 17, 1954. | DOI
[3] K. Rektorys : Nonlinear problem of heat conduction in concrete massives. (In Czech), Thesis MÚ ČSAV, Praha 1961.
[4] K. Rektorys: The method of discretization in time and partial differential equations. Reidel Co, Dodrecht, Holland 1982. | MR | Zbl
[5] A. Friedman: Partial differential equations of parabolic type. Prentice-Hall, IMC. 1964. | MR | Zbl
[6] O. A. Ladyženskaja. V. A. Solonnikov N. N. Uralceva: Linear and nonlinear equations of parabolic type. (In Russian). Moskva 1967.
[7] T. Kato: Linear evolution equations of "hyperbolic" type. J. Fac. Sci. Univ. Tokyo, Sec. 1, vol. XVII (1970), pyrt 182, 241-258. | MR | Zbl
[8] G. Duvaut J. L. Lions: Inequalities in mechanics and physics. Springer, Berlin 1976. | MR
[9] A. Doktor: Mixed problem for semilinear hyperbolic equation of second order with Dirichlet boundary condition. Czech. Math. J., 23 (98), 1973, 95-122. | MR | Zbl
Cité par Sources :