An energy analysis of degenerate hyperbolic partial differential equations.
Applications of Mathematics, Tome 29 (1984) no. 5, pp. 350-366.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An energy analysis is carried out for the usual semidiscrete Galerkin method for the semilinear equation in the region$\Omega$ (E) $(tu_t)_t=\sum_{i,j=1}(a_{ij}(x)u_{x_i})_{x_j} - {a_0(x)u+f(u)}$, subject to the initial and boundary conditions, $u=0$ on $\partial\Omega$ and $u(x,0)=u_0$. (E) is degenerate at $t=0$ and thus, even in the case $f\equiv 0$, time derivatives of $u$ will blow up as $t\rightarrow 0$. Also, in the case where $f$ is locally Lipschitz, solutions of (E) can blow up for $t>0$ in finite time. Stability and convergence of the scheme in $W^{2,1}$ is shown in the linear case without assuming $u_{tt}$ (which can blow up as $t\rightarrow 0$ is smooth. Convergence of the approximation to $u$ is shown in the case where $f$ is nonlinear and locally Lipschitz. The convergence occurs in regions where $u(x,t)$ exists and is smooth. Rates of convergence are given.
DOI : 10.21136/AM.1984.104105
Classification : 35L10, 35L80, 65M60, 65N30
Keywords: degenerate equation; Lipschitz; energy analysis; semi-discrete Galerkin method; semilinear equation; stability; convergence
@article{10_21136_AM_1984_104105,
     author = {Layton, William J.},
     title = {An energy analysis of degenerate hyperbolic partial differential equations.},
     journal = {Applications of Mathematics},
     pages = {350--366},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {1984},
     doi = {10.21136/AM.1984.104105},
     mrnumber = {0772270},
     zbl = {0564.65073},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104105/}
}
TY  - JOUR
AU  - Layton, William J.
TI  - An energy analysis of degenerate hyperbolic partial differential equations.
JO  - Applications of Mathematics
PY  - 1984
SP  - 350
EP  - 366
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104105/
DO  - 10.21136/AM.1984.104105
LA  - en
ID  - 10_21136_AM_1984_104105
ER  - 
%0 Journal Article
%A Layton, William J.
%T An energy analysis of degenerate hyperbolic partial differential equations.
%J Applications of Mathematics
%D 1984
%P 350-366
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104105/
%R 10.21136/AM.1984.104105
%G en
%F 10_21136_AM_1984_104105
Layton, William J. An energy analysis of degenerate hyperbolic partial differential equations.. Applications of Mathematics, Tome 29 (1984) no. 5, pp. 350-366. doi : 10.21136/AM.1984.104105. http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104105/

Cité par Sources :