The existence and uniqueness theorem in Biot's consolidation theory
Applications of Mathematics, Tome 29 (1984) no. 3, pp. 194-211.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Existence and uniqueness theorem is established for a variational problem including Biot's model of consolidation of clay. The proof of existence is constructive and uses the compactness method. Error estimates for the approximate solution obtained by a method combining finite elements and Euler's backward method are given.
DOI : 10.21136/AM.1984.104085
Classification : 35A05, 35A15, 35A35, 35G05, 65N30, 73Q05
Keywords: Existence; uniqueness; variational problem; Biot’s model; compactness method; approximate solution; finite elements; Euler’s backward method
@article{10_21136_AM_1984_104085,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {The existence and uniqueness theorem in {Biot's} consolidation theory},
     journal = {Applications of Mathematics},
     pages = {194--211},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {1984},
     doi = {10.21136/AM.1984.104085},
     mrnumber = {0747212},
     zbl = {0557.35005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104085/}
}
TY  - JOUR
AU  - Ženíšek, Alexander
TI  - The existence and uniqueness theorem in Biot's consolidation theory
JO  - Applications of Mathematics
PY  - 1984
SP  - 194
EP  - 211
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104085/
DO  - 10.21136/AM.1984.104085
LA  - en
ID  - 10_21136_AM_1984_104085
ER  - 
%0 Journal Article
%A Ženíšek, Alexander
%T The existence and uniqueness theorem in Biot's consolidation theory
%J Applications of Mathematics
%D 1984
%P 194-211
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104085/
%R 10.21136/AM.1984.104085
%G en
%F 10_21136_AM_1984_104085
Ženíšek, Alexander. The existence and uniqueness theorem in Biot's consolidation theory. Applications of Mathematics, Tome 29 (1984) no. 3, pp. 194-211. doi : 10.21136/AM.1984.104085. http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104085/

Cité par Sources :