Finite elements methods for solving viscoelastic thin plates
Applications of Mathematics, Tome 29 (1984) no. 2, pp. 81-103.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by $C^1$-elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.
DOI : 10.21136/AM.1984.104073
Classification : 65N30, 73F15, 73K25, 74D99, 74E10, 74K20, 74S05
Keywords: viscoelastic bending; thin plates; finite elements in space; finite difference in time; rate of convergence
@article{10_21136_AM_1984_104073,
     author = {R\r{u}\v{z}i\v{c}kov\'a, Helena and \v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {Finite elements methods for solving viscoelastic thin plates},
     journal = {Applications of Mathematics},
     pages = {81--103},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {1984},
     doi = {10.21136/AM.1984.104073},
     mrnumber = {0738495},
     zbl = {0541.73090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104073/}
}
TY  - JOUR
AU  - Růžičková, Helena
AU  - Ženíšek, Alexander
TI  - Finite elements methods for solving viscoelastic thin plates
JO  - Applications of Mathematics
PY  - 1984
SP  - 81
EP  - 103
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104073/
DO  - 10.21136/AM.1984.104073
LA  - en
ID  - 10_21136_AM_1984_104073
ER  - 
%0 Journal Article
%A Růžičková, Helena
%A Ženíšek, Alexander
%T Finite elements methods for solving viscoelastic thin plates
%J Applications of Mathematics
%D 1984
%P 81-103
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104073/
%R 10.21136/AM.1984.104073
%G en
%F 10_21136_AM_1984_104073
Růžičková, Helena; Ženíšek, Alexander. Finite elements methods for solving viscoelastic thin plates. Applications of Mathematics, Tome 29 (1984) no. 2, pp. 81-103. doi : 10.21136/AM.1984.104073. http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104073/

Cité par Sources :