On spectral bandwidth of a stationary random process
Applications of Mathematics, Tome 28 (1983) no. 4, pp. 262-268.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The irregularity coefficient is one of the numerical characteristics of the spectral bandwith of a stationary random process. Its basic properties are investigated and the application to the dichotomic classification of a process into narrow-band and wide-band ones is given. Further, its behaviour is analyzed for sufficiently wide classes of stationary processes whose spectral densities frequently appear both in theory and applications.
DOI : 10.21136/AM.1983.104036
Classification : 60G10, 60G35, 94A05
Keywords: spectral bandwith; dichotomic classification
@article{10_21136_AM_1983_104036,
     author = {Klega, Vladim{\'\i}r},
     title = {On spectral bandwidth of a stationary random process},
     journal = {Applications of Mathematics},
     pages = {262--268},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1983},
     doi = {10.21136/AM.1983.104036},
     mrnumber = {0710175},
     zbl = {0525.60046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104036/}
}
TY  - JOUR
AU  - Klega, Vladimír
TI  - On spectral bandwidth of a stationary random process
JO  - Applications of Mathematics
PY  - 1983
SP  - 262
EP  - 268
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104036/
DO  - 10.21136/AM.1983.104036
LA  - en
ID  - 10_21136_AM_1983_104036
ER  - 
%0 Journal Article
%A Klega, Vladimír
%T On spectral bandwidth of a stationary random process
%J Applications of Mathematics
%D 1983
%P 262-268
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104036/
%R 10.21136/AM.1983.104036
%G en
%F 10_21136_AM_1983_104036
Klega, Vladimír. On spectral bandwidth of a stationary random process. Applications of Mathematics, Tome 28 (1983) no. 4, pp. 262-268. doi : 10.21136/AM.1983.104036. http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104036/

Cité par Sources :