On difference linear periodic systems. I. Homogeneous case
Applications of Mathematics, Tome 28 (1983) no. 4, pp. 241-248.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with the reduction of a linear homogeneous periodic system in differences (recurrence relations) to another linear homogeneous system with constant coefficients. This makes it possible to study the existence and properties of periodic solutions, the asymptotic behavior, and to obtain all solutions in closed form.
DOI : 10.21136/AM.1983.104034
Classification : 39A10
Keywords: finite linear homogeneous system; $N$-periodic; explicit solution; asymptotic behaviour
@article{10_21136_AM_1983_104034,
     author = {Zaballa, Ion and Gracia, Juan M.},
     title = {On difference linear periodic systems. {I.} {Homogeneous} case},
     journal = {Applications of Mathematics},
     pages = {241--248},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {1983},
     doi = {10.21136/AM.1983.104034},
     mrnumber = {0710173},
     zbl = {0529.39003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104034/}
}
TY  - JOUR
AU  - Zaballa, Ion
AU  - Gracia, Juan M.
TI  - On difference linear periodic systems. I. Homogeneous case
JO  - Applications of Mathematics
PY  - 1983
SP  - 241
EP  - 248
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104034/
DO  - 10.21136/AM.1983.104034
LA  - en
ID  - 10_21136_AM_1983_104034
ER  - 
%0 Journal Article
%A Zaballa, Ion
%A Gracia, Juan M.
%T On difference linear periodic systems. I. Homogeneous case
%J Applications of Mathematics
%D 1983
%P 241-248
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104034/
%R 10.21136/AM.1983.104034
%G en
%F 10_21136_AM_1983_104034
Zaballa, Ion; Gracia, Juan M. On difference linear periodic systems. I. Homogeneous case. Applications of Mathematics, Tome 28 (1983) no. 4, pp. 241-248. doi : 10.21136/AM.1983.104034. http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104034/

Cité par Sources :