Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method
Applications of Mathematics, Tome 28 (1983) no. 3, pp. 199-214.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A problem of unilateral contact between an elasto-plastic body and a rigid frictionless foundation is solved within the range of the so called deformation theory of plasticity. The weak solution is defined by means of a variational inequality. Then the so called secant module (Kačanov's) iterative method is introduced, each step of which corresponds to a Signorini's problem of elastoplastics. The convergence of the method is proved on an abstract level.
DOI : 10.21136/AM.1983.104027
Classification : 49A29, 49J40, 58E35, 73E99, 73T05, 74A55, 74C99, 74G30, 74H25, 74M15
Keywords: Kachanov’s iterative method; elastostatics; deformation; unilateral contact; elastoplastic body; rigid foundation; neglecting friction; governed by Hencky-von Mises stress strain relations; weak solution; minimum of potential energy; corresponding variational inequality; secant modules; classical Signorini’s problem; convergence; no numerical applications
@article{10_21136_AM_1983_104027,
     author = {Ne\v{c}as, Jind\v{r}ich and Hlav\'a\v{c}ek, Ivan},
     title = {Solution of {Signorini's} contact problem in the deformation theory of plasticity by secant modules method},
     journal = {Applications of Mathematics},
     pages = {199--214},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {1983},
     doi = {10.21136/AM.1983.104027},
     mrnumber = {0701739},
     zbl = {0512.73097},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104027/}
}
TY  - JOUR
AU  - Nečas, Jindřich
AU  - Hlaváček, Ivan
TI  - Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method
JO  - Applications of Mathematics
PY  - 1983
SP  - 199
EP  - 214
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104027/
DO  - 10.21136/AM.1983.104027
LA  - en
ID  - 10_21136_AM_1983_104027
ER  - 
%0 Journal Article
%A Nečas, Jindřich
%A Hlaváček, Ivan
%T Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method
%J Applications of Mathematics
%D 1983
%P 199-214
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104027/
%R 10.21136/AM.1983.104027
%G en
%F 10_21136_AM_1983_104027
Nečas, Jindřich; Hlaváček, Ivan. Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method. Applications of Mathematics, Tome 28 (1983) no. 3, pp. 199-214. doi : 10.21136/AM.1983.104027. http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104027/

Cité par Sources :