On convergence of homogeneous Markov chains
Applications of Mathematics, Tome 28 (1983) no. 2, pp. 116-119.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $p_t$ be a vector of absolute distributions of probabilities in an irreducible aperiodic homogeneous Markov chain with a finite state space. Professor Alladi Ramakrishnan conjectured the following strict inequality for norms of differences $\left\|p_{t+2}-p_{t+1}\right\|\left\|p_{t+1}-p_t\right\|$. In the paper, a necessary and sufficient condition for the validity of this inequality is proved, which may be useful in investigating the character of convergence of distributions in Markov chains.
DOI : 10.21136/AM.1983.104012
Classification : 60J10
Keywords: convergence of distributions
@article{10_21136_AM_1983_104012,
     author = {Kratochv{\'\i}l, Petr},
     title = {On convergence of homogeneous {Markov} chains},
     journal = {Applications of Mathematics},
     pages = {116--119},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {1983},
     doi = {10.21136/AM.1983.104012},
     mrnumber = {0695185},
     zbl = {0511.60065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104012/}
}
TY  - JOUR
AU  - Kratochvíl, Petr
TI  - On convergence of homogeneous Markov chains
JO  - Applications of Mathematics
PY  - 1983
SP  - 116
EP  - 119
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104012/
DO  - 10.21136/AM.1983.104012
LA  - en
ID  - 10_21136_AM_1983_104012
ER  - 
%0 Journal Article
%A Kratochvíl, Petr
%T On convergence of homogeneous Markov chains
%J Applications of Mathematics
%D 1983
%P 116-119
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104012/
%R 10.21136/AM.1983.104012
%G en
%F 10_21136_AM_1983_104012
Kratochvíl, Petr. On convergence of homogeneous Markov chains. Applications of Mathematics, Tome 28 (1983) no. 2, pp. 116-119. doi : 10.21136/AM.1983.104012. http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104012/

Cité par Sources :