Keywords: nonlinear dynamical; kinematical; linear constitutive thermoelastic; coupled heat conduction equations; spatial problem; Kirchhoff’s and von Kármán’s hypothesis; twodimensional equations; generalized problem with subgradient conditions on boundary; existence of solution; continuous dependence on given data
@article{10_21136_AM_1982_103987,
author = {Wenk, Hans-Ullrich},
title = {On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface},
journal = {Applications of Mathematics},
pages = {393--416},
year = {1982},
volume = {27},
number = {6},
doi = {10.21136/AM.1982.103987},
mrnumber = {0678110},
zbl = {0506.73012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103987/}
}
TY - JOUR AU - Wenk, Hans-Ullrich TI - On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface JO - Applications of Mathematics PY - 1982 SP - 393 EP - 416 VL - 27 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103987/ DO - 10.21136/AM.1982.103987 LA - en ID - 10_21136_AM_1982_103987 ER -
%0 Journal Article %A Wenk, Hans-Ullrich %T On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface %J Applications of Mathematics %D 1982 %P 393-416 %V 27 %N 6 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103987/ %R 10.21136/AM.1982.103987 %G en %F 10_21136_AM_1982_103987
Wenk, Hans-Ullrich. On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface. Applications of Mathematics, Tome 27 (1982) no. 6, pp. 393-416. doi: 10.21136/AM.1982.103987
[1] B. A. Boley J. H. Weiner: Theory of Thernal Stresses. Wiley & Sons, Inc., New York 1960. | MR
[2] C. Dafermos: On the Existence and the Asymptotic Stability of Solutions to the Equations of Linear Thermoelasticity. Arch. Rat. Mech. Anal., 29 (1968), 241 - 271. | DOI | MR | Zbl
[3] G. Duvaut J. L. Lions: Problèmes unilateraux dans la théorie de la flexion forte des plaques, I: Le cas stationaire. J. Méch., 13 (1974), 51 - 74. | MR
[4] G. Duvaut J. L. Lions: Problèmes unilateraux dans la théorie de la flexion forte des plaques, II: Le cas d'évolution. J. Méch., 13 (1974), 245-266. | MR
[5] G. Duvaut: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Rat. Mech. Anal., 46 (1972), 241-279. | DOI | MR | Zbl
[6] G. Duvaut: Les inéquations en méchanique et en physique. Dunod, Paris 1972. | MR
[7] S. A. Gribanov V. N. Ogibalov: Thermostability of Plates and Shells. (in Russian). Izd. Mosc. Univ. 1968.
[8] I. Hlaváček J. Naumann: Inhomogeneous Boundary Value Problems for the von Kármán's Equations, I. Apl. Matem., 19 (1974), 253 - 269. | MR
[9] I. Hlaváček J. Naumann: Inhomogeneous Boundary Value Problems for the von Kármán's Equations, II. Apl. Matem., 20 (1975), 280-297. | MR
[10] I. Hlaváček J. Nečas: On Inequalities of Korn's Type, I: Boundary value problems for elliptic systems of partial differential equations, II: Applications to linear elasticity. Arch. Rat. Mech. Anal., 36 (1970), 305-334. | MR
[11] R. Hünlich J. Naumann: On General Boundary Value Problems and Duality in Linear Elasticity, I. Apl. Matem., 23 (1978). | MR
[12] J. L. Lions E. Magénès: Problèmes aux limites non homogènes et applications. vol. 1. Dunod, Paris 1968. | MR
[13] J. Naumann: On Some Unilateral Boundary Value Problems for the von Kármán's Equations, part I: The coercive case. Apl. Matem., 20 (1975), 96-125. | MR
[14] J. Naumann: On Some Unilateral Boundary Value Problems in Non-linear Plate Theory. Beiträge zur Analysis, 10 (1977), 119-134. | MR
[15] J. Nečas: Les méthodes directes en théorie des équations elliptiques. Academia, Prague 1967. | MR
[16] W. Nowacki: Theory of Elasticity. (in Russian). Mir, Moscow 1975. | MR | Zbl
[17] W. Nowacki: Thermoelasticity. Intern. Series of Monographs on Aeronautics and Astronautics, Div. I: Solid and Structural Mechanics, Pergamon Press 1962.
[18] W. Nowacki: Dynamical Problems of Thermoelasticity. (in Russian). Mir, Moscow 1970.
[19] K. Washizu: Variational Methods in Elasticity and Plasticity. Pergamon Press 1974. | MR
[20] H.-U. Wenk: Functional-analytical Investigations on Unilateral Problems in Plate Theory. (in German). Thesis A, Humboldt-Univ., Berlin 1978.
Cité par Sources :