Some methodical remarks concerning the flow around arbitrary profiles
Applications of Mathematics, Tome 27 (1982) no. 4, pp. 251-258.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Two well known definitions of the flow of a plane vector field around the boundary of a region $\Omega$ are compared. The definition (appropriately arranged) based on the constantness of the stream function on every profile is not only invariant under conformal mappings but more general than the definition based on the vanishing of the normal component of the field on $\partial \Omega$.
DOI : 10.21136/AM.1982.103970
Classification : 30C35, 76B10, 76B99
Keywords: flow of plane vector field around boundary of region; conformal mappings
@article{10_21136_AM_1982_103970,
     author = {\v{C}ern\'y, Ilja},
     title = {Some methodical remarks concerning the flow around arbitrary profiles},
     journal = {Applications of Mathematics},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {27},
     number = {4},
     year = {1982},
     doi = {10.21136/AM.1982.103970},
     mrnumber = {0666904},
     zbl = {0496.76010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103970/}
}
TY  - JOUR
AU  - Černý, Ilja
TI  - Some methodical remarks concerning the flow around arbitrary profiles
JO  - Applications of Mathematics
PY  - 1982
SP  - 251
EP  - 258
VL  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103970/
DO  - 10.21136/AM.1982.103970
LA  - en
ID  - 10_21136_AM_1982_103970
ER  - 
%0 Journal Article
%A Černý, Ilja
%T Some methodical remarks concerning the flow around arbitrary profiles
%J Applications of Mathematics
%D 1982
%P 251-258
%V 27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103970/
%R 10.21136/AM.1982.103970
%G en
%F 10_21136_AM_1982_103970
Černý, Ilja. Some methodical remarks concerning the flow around arbitrary profiles. Applications of Mathematics, Tome 27 (1982) no. 4, pp. 251-258. doi : 10.21136/AM.1982.103970. http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103970/

Cité par Sources :