Invariant resistive networks in Euclidean spaces and their relation to geometry
Applications of Mathematics, Tome 27 (1982) no. 2, pp. 128-145.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Geometric properties of finite systems of homogeneous resistive wire segments in a Euclidean $n$-space are studied in the case that the absorption of energy of such a system in an arbitrary linear electrical field is invariant under any orthogonal transformation of the system.
DOI : 10.21136/AM.1982.103953
Classification : 51F99, 78A25, 94C05
Keywords: electrical network; homogeneous resistive wire segments; homogeneous electrical field; geometric properties of invariant systems; conductivities; electrical invariance
@article{10_21136_AM_1982_103953,
     author = {Fiedler, Miroslav},
     title = {Invariant resistive networks in {Euclidean} spaces and their relation to geometry},
     journal = {Applications of Mathematics},
     pages = {128--145},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {1982},
     doi = {10.21136/AM.1982.103953},
     mrnumber = {0651050},
     zbl = {0491.94025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103953/}
}
TY  - JOUR
AU  - Fiedler, Miroslav
TI  - Invariant resistive networks in Euclidean spaces and their relation to geometry
JO  - Applications of Mathematics
PY  - 1982
SP  - 128
EP  - 145
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103953/
DO  - 10.21136/AM.1982.103953
LA  - en
ID  - 10_21136_AM_1982_103953
ER  - 
%0 Journal Article
%A Fiedler, Miroslav
%T Invariant resistive networks in Euclidean spaces and their relation to geometry
%J Applications of Mathematics
%D 1982
%P 128-145
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103953/
%R 10.21136/AM.1982.103953
%G en
%F 10_21136_AM_1982_103953
Fiedler, Miroslav. Invariant resistive networks in Euclidean spaces and their relation to geometry. Applications of Mathematics, Tome 27 (1982) no. 2, pp. 128-145. doi : 10.21136/AM.1982.103953. http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103953/

Cité par Sources :